Professor
(School of Advanced Science and Engineering)
Faculty of Science and Engineering(Graduate School of Advanced Science and Engineering)
研究所員 2011-2014
研究所員 2015-2019
兼任研究員 2018-
研究所員 2019-
Seeds Field:Nanotechnology / Materials
Individual research allowance
D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble
Nature Physics 7p.1592011-
T. Aoki
Jpn. J. Appl. Phys. 49p.1180012010-
T. Aoki, G. Takahashi, T. Kajiya, J. Yoshikawa, S. L. Braunstein, P. van Loock, and A. Furusawa
Nature Physics 5p.5412009-
T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble
Phys. Rev. Lett. 102p.0836012009-
B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble
Science 319p.10622008-
K. Yoshino, T. Aoki and A. Furusawa
Appl. Phys. Lett. 90p.0411112007-
T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble
Nature 443p.6712006-
T. Aoki, G. Takahashi, and A. Furusawa
Optics Express 14p.69302006-
S. Koike, H. Takahashi, H. Yonezawa, N. Takei, S.L. Braunstein, T. Aoki and A. Furusawa
Phys. Rev. Lett. 96p.0605042006-
N. Takei, T. Aoki, S. Koike, K. Yoshino, K. Wakui, H. Yonezawa, T. Hiraoka, J. Mizuno, M. Takeoka, M. Ban, and A. Furusawa
Phys. Rev. A 72p.0423042005-
N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa
Phys. Rev. Lett. 94p.2205022005-
H. Yonezawa, T. Aoki, and A. Furusawa
Nature 431p.4302004-
T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock
Phys. Rev. Lett. 91p.0804042003-
T. Aoki, Yu. P. Svirko, and M. Kuwata-Gonokami
Solid State Commun 127p.1972003-
K. Kyhm, R. A. Taylor, J. F. Ryan, T. Aoki, M. Kuwata-Gonokami, B. Beaumon, and P. Gibart
Phys. Rev. B 65p.1931022002-
T. Aoki, G. Mohs, Yu. P. Svirko, and M. Kuwata-Gonokami
Phys. Rev. B 64p.0452122001-
T. Aoki, Y. Nishikawa, and M. Kuwata-Gonokami
Appl. Phys. Lett. 78p.10652001-
K. Kyhm, R. A. Taylor, J. F. Ryan, T. Aoki, M. Kuwata-Gonokami, B. Beaumon, and P. Gibart
Appl. Phys. Lett. 79p.10972001-
K. Kyhm, R. A. Taylor, J. F. Ryan, T. Aoki, M. Kuwata-Gonokami, B. Beaumon, and P. Gibart
Phys. Status Solidi B 228p.4752001-
M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Yu. P. Svirko
J. Lumin. 87p.1622000-
C. Ramkumar, T. Aoki, R. Shimano, Yu. P. Svirko, T. Kise, T. Someya, H. Sakaki, and M. Kuwata-Gonokami
J. Phys. Soc. Jpn. 69p.24392000-
T. Aoki, G. Mohs, M. Kuwata-Gonokami, and A. A. Yamaguchi
Phys. Rev. Lett. 82p.31081999-
G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura
Solid State Commun 109p.1051998-
G. Mohs, T. Aoki, T. Nagai, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura
Solid State Commun 104p.6431997-
T. Aoki, G. Mohs, T. Ogasawara, R. Shimano, M. Kuwata-Gonokami, and A. A. Yamaguchi
Optics Express 1p.3641997-
Iyoda, Eiki;Kato, Takeo;Aoki, Takao;Edamatsu, Keiichi;Koshino, Kazuki
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 82(1) 2013-2013
ISSN:0031-9015
Kamada, Shohei;Murata, Shuhei;Aoki, Takao
APPLIED PHYSICS EXPRESS 6(3) 2013-2013
ISSN:1882-0778
Yoshida, Tetsuya;Kamada, Shohei;Murata, Shuhei;Aoki, Takao
APPLIED PHYSICS LETTERS 103(15) 2013-2013
ISSN:0003-6951
Kamada, Shohei;Murata, Shuhei;Aoki, Takao
APPLIED PHYSICS EXPRESS 7(2) 2014-2014
ISSN:1882-0778
Kato, Shinya;Chonan, Sho;Aoki, Takao
OPTICS LETTERS 39(4) p.773 - 7762014-2014
ISSN:0146-9592
Koshino, Kazuki;Aoki, Takao
PHYSICAL REVIEW A 89(2) 2014-2014
ISSN:1050-2947
Kamada, Shohei;Yoshida, Tetsuya;Aoki, Takao
APPLIED PHYSICS LETTERS 104(10) 2014-2014
ISSN:0003-6951
Chonan, Sho;Kato, Shinya;Aoki, Takao
SCIENTIFIC REPORTS 42014-2014
ISSN:2045-2322
Yoshida, Tetsuya;Kamada, Shohei;Aoki, Takao
OPTICS EXPRESS 22(19) p.23679 - 236852014-2014
ISSN:1094-4087
Nagai, Ryutaro;Aoki, Takao
OPTICS EXPRESS 22(23) p.28427 - 284362014-2014
ISSN:1094-4087
Parkins, Scott;Aoki, Takao
PHYSICAL REVIEW A 90(5) 2014-2014
ISSN:1050-2947
Wakabayashi, Ryota;Fujiwara, Mikio;Yoshino, Ken-ichiro;Nambu, Yoshihiro;Sasaki, Masahide;Aoki, Takao
OPTICS EXPRESS 23(2) p.1103 - 11132015-2015
ISSN:1094-4087
Endo, H.;Han, T. S.;Aoki, T.;Sasaki, M.
IEEE PHOTONICS JOURNAL 7(5) 2015-2015
ISSN:1943-0655
AOKI Takao
41(7) p.497 - 5012013/07-2013/07
ISSN:03870200
Kato, Shinya; Aoki, Takao
Physical Review Letters 115(9) 2015/08-2015/08
ISSN:00319007
Outline:© 2015 American Physical Society.We demonstrate an all-fiber cavity quantum electrodynamics system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity transmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting.
Senga K.;Matsuhashi Y.;Kato S.;Aoki T.
Meeting Abstracts of the Physical Society of Japan 71(0) 2016-2016
ISSN:2189079X
Senga K.;Matsuhashi Y.;Kato S.;Aoki T.
Meeting Abstracts of the Physical Society of Japan 71(0) 2016-2016
Chonan Sho;Kato Shinya;Aoki Takao
Efficient single-mode photon-coupling device utilizing a nanofiber tip. 42014-2014
ISSN:2045-2322
Outline::Single-photon sources are important elements in quantum optics and quantum information science. It is crucial that such sources be able to couple photons emitted from a single quantum emitter to a single propagating mode, preferably to the guided mode of a single-mode optical fiber, with high efficiency. Various photonic devices have been successfully demonstrated to efficiently couple photons from an emitter to a single mode of a cavity or a waveguide. However, efficient coupling of these devices to optical fibers is sometimes challenging. Here we show that up to 38% of photons from an emitter can be directly coupled to a single-mode optical fiber by utilizing the flat tip of a silica nanofiber. With the aid of a metallic mirror, the efficiency can be increased to 76%. The use of a silicon waveguide further increases the efficiency to 87%. This simple device can be applied to various quantum emitters.
Endo, H.; Endo, H.; Han, T. S.; Aoki, T.; Sasaki, M.
IEEE Photonics Journal 7(5) 2015/10-2015/10
ISSN:19430655
Outline:© 2015 IEEE. Secrecy issues of free-space optical links realizing information theoretically secure communications and high transmission rates are discussed. We numerically study secrecy communication rates of optical wiretap channel based on on-off keying (OOK) modulation under typical conditions met in satellite-ground links. It is shown that, under reasonable degraded conditions on a wiretapper, information theoretically secure communications should be possible in a much wider distance range than a range limit of quantum key distribution, enabling secure optical links between geostationary Earth orbit satellites and ground stations with currently available technologies. We also provide the upper bounds on the decoding error probability and the leaked information to estimate a necessary code length for given required levels of performances. This result ensures that a reasonable length of wiretap channel code for our proposed scheme must exist.
Uchida, K.; Hirori, H.; Hirori, H.; Aoki, T.; Aoki, T.; Wolpert, C.; Tamaya, T.; Tanaka, K.; Tanaka, K.; Tanaka, K.; Mochizuki, T.; Kim, C.; Yoshita, M.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.
Applied Physics Letters 107(22) 2015/11-2015/11
ISSN:00036951
Outline:© 2015 AIP Publishing LLC.By combining a tilted-pulse-intensity-front scheme using a LiNbO3 crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwidth of ∼50 GHz, and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region. This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.
Endo, Hiroyuki; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide
Optics Express 24(8) p.8940 - 89552016/04-2016/04
Outline:© 2016 Optical Society of America.We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.
Wakui, Kentaro; Yonezu, Yuya; Yonezu, Yuya; Aoki, Takao; Takeoka, Masahiro; Semba, Kouichi
Japanese Journal of Applied Physics 56(5) 2017/05-2017/05
ISSN:00214922
Outline:© 2017 The Japan Society of Applied Physics. Diamond nanowires are fabricated on a bulk, single crystalline diamond near an edge of aluminum coating using inductively coupled plasma reactive ion etching. Two different density areas are simultaneously appeared where the dense area has 9 times higher density than that of the sparse area while keeping the size of nanowires almost uniform in these areas. The nanowire sizes realized in the dense (sparse) area are 858 ± 22nm (876 ± 25nm) in height and 126 ± 6 nm (124 ± 7 nm) in diameter, which is suitable for applications in optical quantum information processing.
Yonezu, Yuya; Yonezu, Yuya; Wakui, Kentaro; Furusawa, Kentaro; Takeoka, Masahiro; Semba, Kouichi; Aoki, Takao
Scientific Reports 7(1) 2017/12-2017/12
Outline:© 2017 The Author(s). Nitrogen-Vacancy (NV) centers in diamond are promising solid-state quantum emitters that can be utilized for photonic quantum applications. Various diamond nanophotonic devices have been fabricated for efficient extraction of single photons emitted from NV centers to a single guided mode. However, for constructing scalable quantum networks, further efficient coupling of single photons to a guided mode of a single-mode fiber (SMF) is indispensable and a difficult challenge. Here, we propose a novel efficient hybrid system between an optical nanofiber and a cylindrical-structured diamond nanowire. The maximum coupling efficiency as high as 75% for the sum of both fiber ends is obtained by numerical simulations. The proposed hybrid system will provide a simple and efficient interface between solid-state quantum emitters and a SMF suitable for constructing scalable quantum networks.
CHONAN Sho;KATOI Shinya;AOKI Takao
Technical report of IEICE. LQE 113(49) p.31 - 342013/05-2013/05
ISSN:0913-5685
Outline:Efficient coupling of photons from single-photon source to the single-mode fiber is requied for quantum information and cryptography technology. We have performed simulations of photon-collecting devices utilizing a nanofiber tip. Up to 38% of light from point dipole source is coupled to the fundamental guided mode of the nanofiber. These devices utilizing a nanofiber tip are promising to achive efficient single-photon sources.
Kato Shinya;Aoki Takao
70(2) 2015/09-2015/09
ISSN:2189079X
Reference Number:1386
チャープ制御方法及びチャープ制御装置(日本)青木 隆朗, 鎌田 祥平
2013-019119、2014-149470
Reference Number:1387
集光部(日本)長南 翔, 青木 隆朗
2013- 42098、2014-170125
Reference Number:1771
量子ゲート装置および量子計算方法(日本)青木 隆朗
2016-002172、2017-123078
Reference Number:1942
量子もつれ生成装置及び方法(日本)青木 隆朗
2017-133521、2019-015872
Reference Number:2125
光子生成装置(日本)青木 隆朗
2019- 38514、2020-144163
Reference Number:2208
光子生成装置(日本)青木 隆朗, 宇津木 健
2019-181099
Reference Number:2342
量子計算ユニット、単一光子源、および量子計算装置(日本)青木 隆朗
2020-118590
Research Classification:
Waveguide quantum electrodynamics using optical nanofiber2014/-0-2017/-0
Allocation Class:¥24050000
Research Classification:
Quantum non-demolition measurement with measurement and feed-forwardAllocation Class:¥17290000
Research Classification:
Experimental study on super-dense codingAllocation Class:¥14800000
Research Classification:
Study on time-domain-multiplexed 2D continuous-variable cluster states and its application to large-scale quantum information processing2018/-0-2023/-0
Allocation Class:¥635960000
2014Collaborator:永井隆太郎, 加藤真也
Research Results Outline:ナノ光ファイバーの両端を単一モード光ファイバーと連続的に接続するテーパー部において、基本導波モードと高次導波モードの結合による損失は局所的なファイバーナノ光ファイバーの両端を単一モード光ファイバーと連続的に接続するテーパー部において、基本導波モードと高次導波モードの結合による損失は局所的なファイバー径と各モードの伝搬定数に強く依存する。本研究では、損失を押さえながらも全長を最短にするテーパー形状...ナノ光ファイバーの両端を単一モード光ファイバーと連続的に接続するテーパー部において、基本導波モードと高次導波モードの結合による損失は局所的なファイバー径と各モードの伝搬定数に強く依存する。本研究では、損失を押さえながらも全長を最短にするテーパー形状を設計するとともに、その作製方法を確立した。具体的には、99.7%を超える透過率を持ちながら全長わずか23 mmのナノ光ファイバーの作製に成功した。この結果はOptics Express誌に発表した[R. Nagai and T. Aoki, Opt.Express 22, 28427 (2014)]。今後は、作製した超低損失ナノ光ファイバーを用いた単一原子のレーザー冷却・トラップとその量子測定・操作を目指す。
2016
Research Results Outline:共振器量子電気力学系は、光共振器に閉じ込められた光子と、それと相互作用する単一原子からなる系であり、特に強結合領域の共振器量子電気力学系では、光と原子共振器量子電気力学系は、光共振器に閉じ込められた光子と、それと相互作用する単一原子からなる系であり、特に強結合領域の共振器量子電気力学系では、光と原子のコヒーレントな相互作用による様々な量子現象が観測できる。研究代表者らは、ごく最近、ナノ光ファイバ...共振器量子電気力学系は、光共振器に閉じ込められた光子と、それと相互作用する単一原子からなる系であり、特に強結合領域の共振器量子電気力学系では、光と原子のコヒーレントな相互作用による様々な量子現象が観測できる。研究代表者らは、ごく最近、ナノ光ファイバーとファイバーブラッグ格子を組み合わせた新奇な全ファイバー共振器を開発し、トラップされた単一原子と全ファイバー共振器の共振器量子電気力学系を実現した。本研究では、これらの成果をもとに、全ファイバー共振器量子電気力学系を複数独立に構築し、それらをファイバーで直接結合した連結共振器量子電気力学系の実現に向けた予備的な研究を実施した。
2017
Research Results Outline:本研究では、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術開発を実施した。すなわち、高Q/V値のトロイ本研究では、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術開発を実施した。すなわち、高Q/V値のトロイド型微小光共振器が持つ極めて強い光閉じ込めを利用して単一光子レベルでの巨大非線形光学効果(光カー効...本研究では、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術開発を実施した。すなわち、高Q/V値のトロイド型微小光共振器が持つ極めて強い光閉じ込めを利用して単一光子レベルでの巨大非線形光学効果(光カー効果)を発現させ、信号光の光子数に比例したプローブ光の位相変化を誘起させることで、信号光の光子数とプローブ光の位相の間に量子相関を生じさせ、量子非破壊測定条件の検証を実施するために必要な技術を開発した。
2017
Research Results Outline:我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を開発した。共振器の光カー効我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を開発した。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器はQ/V値が...我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を開発した。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器はQ/V値が極めて高いため、この共振器を用いることで、微弱光による相互位相変調が発現する。本研究では、実際にこの相互位相変調を観測した。
2018
Research Results Outline:我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器...我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器はQ/V値が極めて高いため、この共振器を用いることで、微弱光による相互位相変調が発現する。本研究では、より大きな相互位相変調を実現するため、共振器の作製方法を改良した。
2018
Research Results Outline:我々は、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術を継続的に開発している。すなわち、高Q/V値のト我々は、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術を継続的に開発している。すなわち、高Q/V値のトロイド型微小光共振器が持つ極めて強い光閉じ込めを利用して単一光子レベルでの巨大非線形光学効果(光カ...我々は、光ファイバーに直接結合した微小共振器を用いて、光子の量子非破壊測定の実現を目指し、その基盤技術を継続的に開発している。すなわち、高Q/V値のトロイド型微小光共振器が持つ極めて強い光閉じ込めを利用して単一光子レベルでの巨大非線形光学効果(光カー効果)を発現させ、信号光の光子数に比例したプローブ光の位相変化を誘起させることで、信号光の光子数とプローブ光の位相の間に量子相関を生じさせ、量子非破壊測定条件の検証を実施するために必要な技術である。本研究では、プローブ光の位相測定におけるノイズの低減に取り組んだ。
2019
Research Results Outline:我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器...我々は、Q値が極めて高く(=損失が低く)、モード体積Vが極めて小さな(=光のエネルギー密度が大きな)トロイド型微小光共振器を継続して開発している。共振器の光カー効果はQ値とモード体積の比(Q/V値)に比例するが、我々の開発したトロイド型微小光共振器はQ/V値が極めて高いため、この共振器を用いることで、微弱光による相互位相変調が発現する。本研究では、より大きな相互位相変調を実現するため、新たな共振器作製方法を開発した。
2011
Research Results Outline:量子光学の実験的研究において、高Q値微小光共振器を用いて光を波長スケールの微小体積中に強く閉じ込めることで、光の量子性が増強され、通常の系では困難な非量子光学の実験的研究において、高Q値微小光共振器を用いて光を波長スケールの微小体積中に強く閉じ込めることで、光の量子性が増強され、通常の系では困難な非古典的光学現象の観測が可能となる。我々は過去の研究において107~108程度の高Q値微小トロイド型...量子光学の実験的研究において、高Q値微小光共振器を用いて光を波長スケールの微小体積中に強く閉じ込めることで、光の量子性が増強され、通常の系では困難な非古典的光学現象の観測が可能となる。我々は過去の研究において107~108程度の高Q値微小トロイド型光共振器を用いてさまざまな非古典的光学現象の観測に成功した。しかし、これらの研究で観測された非古典的光学現象あるいは生成された光の量子状態の量子性は依然として低く、量子通信をはじめとした光学的量子情報への応用には不十分である。そのため、より高いQ値の微小共振器の開発が求められている。上記の研究で用いた微小トロイド型光共振器は、エレクトロニクス用途のシリコン基板上のシリコン酸化膜を材料とするが、低損失光ファイバーを材料とすることでさらにQ値の高い共振器の実現が期待される。そこで本研究では、低損失光ファイバーを材料として微小球型光共振器を作成し、109~1010の超高Q値微小光共振器の実現を目指した。まず、光ファイバーを溶融し、表面張力により真球形状の微小光共振器を作製する技術を開発した。具体的には、被覆を除去しクラッド表面を洗浄した光ファイバーの先端を、CO2レーザーを用いて溶融した。シリカガラスはCO2レーザーの発振波長である中赤外領域に大きな吸収係数を持つため、CO2レーザーの照射によって局所的に加熱することができる。ただしこの方法では、流入熱量は加熱領域の体積に比例するが放射による熱の流出は表面積に比例するため、数μmスケールの微小な体積の高温加熱は困難であることも予想された。しかし、開口数の大きなレンズを用いてレーザーを集光することで、直径数μm程度の極細光ファイバーの先端であっても容易に溶融させることができた。上記の方法で作製した微小球共振器のQ値を周波数領域において測定した。テーパーファイバーを外部導波路として結合した微小球共振器に対して狭線幅の外部共振器型半導体レーザーを入力し、レーザー波長を掃引することで共振スペクトルを測定し、その幅からQ値を得た。結合損失を考慮し、共振器の真性Q値を見積もった結果、1×109を達成した。作製条件の最適化によって、更なるQ値の向上が見込まれる。
Course Title | School | Year | Term |
---|---|---|---|
Science and Engineering Laboratory 1A II | School of Fundamental Science and Engineering | 2020 | spring semester |
Science and Engineering Laboratory 1A II | School of Creative Science and Engineering | 2020 | spring semester |
Science and Engineering Laboratory 1A II | School of Advanced Science and Engineering | 2020 | spring semester |
Science and Engineering Laboratory 1A II | School of Fundamental Science and Engineering | 2021 | spring semester |
Science and Engineering Laboratory 1A II | School of Creative Science and Engineering | 2021 | spring semester |
Science and Engineering Laboratory 1A II | School of Advanced Science and Engineering | 2021 | spring semester |
Basic Experiments in Science and Engineering 2B Kagaku | School of Advanced Science and Engineering | 2020 | fall semester |
Basic Experiments in Science and Engineering 2B Kagaku | School of Advanced Science and Engineering | 2021 | fall semester |
Basic Experiments in Science and Engineering 2B Seii | School of Advanced Science and Engineering | 2020 | fall semester |
Basic Experiments in Science and Engineering 2B Seii | School of Advanced Science and Engineering | 2021 | fall semester |
Introduction to Physics | School of Advanced Science and Engineering | 2020 | spring semester |
Introduction to Physics | School of Advanced Science and Engineering | 2020 | spring semester |
Introduction to Physics | School of Advanced Science and Engineering | 2021 | spring semester |
Introduction to Physics | School of Advanced Science and Engineering | 2021 | spring semester |
Introduction to Physics [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Introduction to Physics [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Introduction to Physics [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Introduction to Physics [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Applied Physics: Experiment B | School of Advanced Science and Engineering | 2020 | full year |
Physics: Experiment B | School of Advanced Science and Engineering | 2020 | full year |
Applied Physics: Experiment B | School of Advanced Science and Engineering | 2021 | full year |
Physics: Experiment B | School of Advanced Science and Engineering | 2021 | full year |
Applied Physics: Experiment B [S Grade] | School of Advanced Science and Engineering | 2020 | full year |
Physics: Experiment B [S Grade] | School of Advanced Science and Engineering | 2020 | full year |
Applied Physics: Experiment B [S Grade] | School of Advanced Science and Engineering | 2021 | full year |
Physics: Experiment B [S Grade] | School of Advanced Science and Engineering | 2021 | full year |
Graduation Study | School of Advanced Science and Engineering | 2020 | full year |
Graduation Study | School of Advanced Science and Engineering | 2021 | full year |
Graduation Study [S Grade] | School of Advanced Science and Engineering | 2020 | full year |
Graduation Study [S Grade] | School of Advanced Science and Engineering | 2021 | full year |
Graduation Study | School of Advanced Science and Engineering | 2020 | full year |
Graduation Study | School of Advanced Science and Engineering | 2021 | full year |
Graduation Study [S Grade] | School of Advanced Science and Engineering | 2020 | full year |
Graduation Study [S Grade] | School of Advanced Science and Engineering | 2021 | full year |
Quantum Electronics | School of Advanced Science and Engineering | 2020 | fall semester |
Quantum Electronics | School of Advanced Science and Engineering | 2020 | fall semester |
Quantum Electronics | School of Advanced Science and Engineering | 2021 | fall semester |
Quantum Electronics | School of Advanced Science and Engineering | 2021 | fall semester |
Optics B | School of Advanced Science and Engineering | 2020 | fall semester |
Optics B | School of Advanced Science and Engineering | 2020 | fall semester |
Optics B | School of Advanced Science and Engineering | 2021 | fall semester |
Optics B | School of Advanced Science and Engineering | 2021 | fall semester |
Optics A | School of Advanced Science and Engineering | 2020 | spring semester |
Optics A | School of Advanced Science and Engineering | 2020 | spring semester |
Optics A | School of Advanced Science and Engineering | 2021 | spring semester |
Optics A | School of Advanced Science and Engineering | 2021 | spring semester |
Optics A [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Optics A [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Optics A [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Optics A [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Graduation Thesis A (Physics) | School of Advanced Science and Engineering | 2020 | fall semester |
Graduation Thesis A (Physics) | School of Advanced Science and Engineering | 2021 | fall semester |
Graduation Thesis A (Physics) [S Grade] | School of Advanced Science and Engineering | 2020 | fall semester |
Graduation Thesis A (Physics) [S Grade] | School of Advanced Science and Engineering | 2021 | fall semester |
Graduation Thesis A (Applied Physics) | School of Advanced Science and Engineering | 2020 | fall semester |
Graduation Thesis A (Applied Physics) | School of Advanced Science and Engineering | 2021 | fall semester |
Graduation Thesis A (Applied Physics) [S Grade] | School of Advanced Science and Engineering | 2020 | fall semester |
Graduation Thesis A (Applied Physics) [S Grade] | School of Advanced Science and Engineering | 2021 | fall semester |
Graduation Thesis B (Physics) | School of Advanced Science and Engineering | 2020 | spring semester |
Graduation Thesis B (Physics) | School of Advanced Science and Engineering | 2021 | spring semester |
Graduation Thesis B (Physics) [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Graduation Thesis B (Physics) [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Graduation Thesis B (Applied Physics) | School of Advanced Science and Engineering | 2020 | spring semester |
Graduation Thesis B (Applied Physics) | School of Advanced Science and Engineering | 2021 | spring semester |
Graduation Thesis B (Applied Physics) [S Grade] | School of Advanced Science and Engineering | 2020 | spring semester |
Graduation Thesis B (Applied Physics) [S Grade] | School of Advanced Science and Engineering | 2021 | spring semester |
Scientific Research | School of Advanced Science and Engineering | 2021 | spring semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2020 | fall semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2020 | fall semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2020 | fall semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2021 | fall semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2021 | fall semester |
Current Topics in Physics | School of Advanced Science and Engineering | 2021 | fall semester |
Current Topics in Physics [S Grade] | School of Advanced Science and Engineering | 2020 | fall semester |
Current Topics in Physics [S Grade] | School of Advanced Science and Engineering | 2021 | fall semester |
Graduation Thesis Spring | School of Advanced Science and Engineering | 2021 | spring semester |
Graduation Thesis Fall | School of Advanced Science and Engineering | 2021 | fall semester |
Engineering Physics B | School of Advanced Science and Engineering | 2020 | fall semester |
Engineering Physics B | School of Advanced Science and Engineering | 2020 | fall semester |
Engineering Physics B | School of Advanced Science and Engineering | 2021 | fall semester |
Engineering Physics B | School of Advanced Science and Engineering | 2021 | fall semester |
Master's Thesis (Department of Pure and Applied Physics) | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2021 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2021 | full year |
Advanced Quantum Optics | Graduate School of Advanced Science and Engineering | 2020 | spring semester |
Advanced Quantum Optics | Graduate School of Advanced Science and Engineering | 2020 | spring semester |
Advanced Quantum Optics | Graduate School of Advanced Science and Engineering | 2021 | spring semester |
Advanced Quantum Optics | Graduate School of Advanced Science and Engineering | 2021 | spring semester |
Seminar on Quantum Optics A | Graduate School of Advanced Science and Engineering | 2020 | spring semester |
Seminar on Quantum Optics A | Graduate School of Advanced Science and Engineering | 2020 | spring semester |
Seminar on Quantum Optics B | Graduate School of Advanced Science and Engineering | 2020 | fall semester |
Seminar on Quantum Optics B | Graduate School of Advanced Science and Engineering | 2020 | fall semester |
Seminar on Quantum Optics C | Graduate School of Advanced Science and Engineering | 2021 | spring semester |
Seminar on Quantum Optics C | Graduate School of Advanced Science and Engineering | 2021 | spring semester |
Seminar on Quantum Optics D | Graduate School of Advanced Science and Engineering | 2021 | fall semester |
Seminar on Quantum Optics D | Graduate School of Advanced Science and Engineering | 2021 | fall semester |
Master's Thesis (Department of Pure and Applied Physics) | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Quantum Optics | Graduate School of Advanced Science and Engineering | 2021 | full year |
Study Abroad in Physics and Applied Physics A | Graduate School of Advanced Science and Engineering | 2020 | full year |
Study Abroad in Physics and Applied Physics A | Graduate School of Advanced Science and Engineering | 2021 | full year |
Study Abroad in Physics and Applied Physics B | Graduate School of Advanced Science and Engineering | 2020 | full year |
Study Abroad in Physics and Applied Physics B | Graduate School of Advanced Science and Engineering | 2021 | full year |
Study Abroad in Physics and Applied Physics C | Graduate School of Advanced Science and Engineering | 2020 | full year |
Study Abroad in Physics and Applied Physics C | Graduate School of Advanced Science and Engineering | 2021 | full year |
Study Abroad in Physics and Applied Physics D | Graduate School of Advanced Science and Engineering | 2020 | full year |
Study Abroad in Physics and Applied Physics D | Graduate School of Advanced Science and Engineering | 2021 | full year |
Research on Physics and Applied Physics B AOKI, Takao | Graduate School of Advanced Science and Engineering | 2020 | full year |
Research on Physics and Applied Physics B AOKI, Takao | Graduate School of Advanced Science and Engineering | 2021 | full year |