Junior Researcher(Assistant Professor)
(Waseda Research Institute for Science and Engineering)
The Society of Chemical Engineers, Japan
The Fullerene, Nanotubes and Graphene Research Society
The Japan Society of Applied Physics
2017/09
2018/12
Engineering / Process/Chemical engineering / Reaction engineering/Process system
Seeds Field:Life sciences
Seeds Field:Life sciences
Seeds Field:Nanotechnology / Materials
Seeds Field:Nanotechnology / Materials
H. Sugime, T. Sato, R. Nakagawa, C. Cepek, and S. Noda,
ACS Nano 13p.13208 - 132162019-
R. Xie, N. Ishijima, H. Sugime, and S. Noda
Sci. Rep. 9p.120512019-
Rughoobur, Girish; Rughoobur, Girish; Sugime, Hisashi; Sugime, Hisashi; DeMiguel-Ramos, Mario; Mirea, Teona; Zheng, Shan; Robertson, John; Iborra, Enrique; Flewitt, Andrew John
Sensors and Actuators, B: Chemical 261p.398 - 4072018/05-2018/05
ISSN:09254005
Outline:© 2018 Elsevier B.V. A thickness longitudinal mode (TLM) thin film bulk acoustic resonator biosensor is demonstrated to operate in water with a high quality-factor, Q. This is achieved using a layer of carbon nanotubes (CNTs) on top of the resonator which has a significantly different acoustic impedance to either the resonator or liquid whilst being susceptible to the binding of biological molecules. This allows the resonance to be decoupled from direct energy loss into the liquid, although still retaining mass sensitivity. AlN solidly mounted resonators (SMRs) having a thickness shear mode (TSM) at 1.1 GHz and TLM at 1.9 GHz are fabricated. CNTs with different forest densities are grown by chemical vapor deposition on the active area with Fe as the catalyst and resulting devices are compared. High forest density CNTs are shown to acoustically decouple the SMRs from the water and in-liquid TLM Q values higher than 150 are recorded even exceeding TSM SMRs without CNTs. The TLM Q in water is remarkably improved from 3 to 160 for the first time by dense CNT forests, rendering the large-scale fabrication of TLM SMRs for liquid-phase sensing applications possible. Despite this partial isolation, SMRs with CNT forests ∼15 μm tall can still detect binding of bovine serum albumin.
H. Sugime, T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda
Analyst 143p.3635 - 36422018-
S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda
Carbon 138p.1 - 72018-
T. Sato, H. Sugime, and S. Noda
Carbon 136p.143 - 1492018-
S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda
Carbon 130p.834 - 8422018-
G. Rughoobur, H. Sugime, M. DeMiguel-Ramos, T. Mirea, S. Zheng, J. Robertson, E. Iborra, and A Flewitt
Sensor. Actuat. B-Chem 261p.398 - 4072018-
H. Sugime, L. D'Arsié, S. Esconjauregui, G. Zhong, X. Wu, E. Hildebrandt, H. Sezen, M. Amati, L. Gregoratti, R.S. Weatherup, J. Robertson
Nanoscale 9(38) p.14467 - 144752017-
ISSN:20403364
Outline:© 2017 The Royal Society of Chemistry. A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co-Cu-C ternary phase diagram. Raman spectroscopy confirms the high quality (I D /I G < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties.
S. Caneva, M.-B. Martin, L. D'Arsié, A.I. Aria, H. Sezen, M. Amati, L. Gregoratti, H. Sugime, S. Esconjauregui, J. Robertson, S. Hofmann, and R.S. Weatherup
ACS Appl. Mater. Interfaces 9(35) p.29973 - 299812017-
Nagai, Yukuya; Okawa, Asahi; Minamide, Taisuke; Hasegawa, Kei; Sugime, Hisashi; Noda, Suguru
ACS Omega 2(7) p.3354 - 33622017-
Outline:© 2017 American Chemical Society. Epitaxial copper (Cu) films yield graphene with superior quality but at high cost. We report 1-3 μm thick epitaxial Cu films prepared on c plane sapphire substrates in 10-30 s, which is much faster than that of the typical sputtering method. Such rapid deposition is realized by vapor deposition using a Cu source heated to 1700-1800 °C, which is much higher than its melting point of 1085 °C. Continuous graphene films, either bilayer or single-layer, are obtained on the epitaxial Cu by chemical vapor deposition and transferred to carrier substrates. The sapphire substrates can be reused five to six times maintaining the quality of the epitaxial Cu films and graphene. The mechanisms and requirements are discussed for such quick epitaxy of Cu on reused sapphire, which will enable high-quality graphene production at lower cost.
H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R. M. Laine, and S. Noda
Carbon 114p.31 - 382017-
L. D'Arsié, S. Esconjauregui, R. Weatherup, X. Wu, W.E. Arter, H. Sugime, C. Cepek and J. Robertson
RSC Advances 6p.113185 - 1131922016-
X. Wu, G. Zhong, L. D'Arsié, H. Sugime, S. Esconjauregui, A. Robertson, and J. Robertson
Sci. Rep. 6p.211522016-
G. Zhong, J. Yang, H. Sugime, R. Rao, J. Zhao, D. Liu, A. Harutyunyan, and J. Robertson
Carbon 98p.624 - 6322016-
S. Esconjauregui, T. Makaryan, T. Mirea, M. DeMiguel-Ramos, J. Olivares, Y. Guo, H. Sugime, L. D'Arsié, J. Yang, S. Bhardwaj, C. Cepek, J. Robertson, and E. Iborra
Appl. Phys. Lett. 107(8) p.1331062015-
S. Esconjauregui, L. D'Arsié, Y. Guo, J. Yang, H. Sugime, S. Caneva, C. Cepek, and J. Robertson
ACS Nano 9(10) p.10422 - 104302015-
H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson
ACS Appl. Mater. Interfaces 7(30) p.16819 - 168272015-
J. Yang, S. Esconjauregui, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, and J. Robertson
Appl. Phys. Lett. 106(8) p.831082015-
J. Yang, S. Esconjauregui, H. Sugime, T. Makaryan, T. Hallam, G.S. Duesberg, and J. Robertson
Physica Status Solidi B 251(12) p.2389 - 23932014-
H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, T. Makaryan, and J. Robertson
ACS Appl. Mater. Interfaces 6(17) p.15440 - 154472014-
J. Yang, S. Esconjauregui, R. Xie, H. Sugime, T. Makaryan, L. D'Arsié, D.L.G. Arellano, S. Bhardwaj, C. Cepek, and J. Robertson
J. Phys. Chem. C 118(32) p.18683 - 186922014-
T. Makaryan, S. Esconjauregui, M. Goncalves, J. Yang, H. Sugime, D. Nille, P. Renganathan, P. Goldberg, and J. Robertson
ACS Appl. Mater. Interfaces 6(8) p.5344 - 53492014-
F.B. Michaelis, R.S. Weatherup, B.C. Bayer, M.C.D. Bock, H. Sugime, S. Caneva, J. Robertson, J.J. Baumberg, and S. Hofmann
ACS Appl. Mater. Interfaces 6(6) p.4025 - 40322014-
S. Esconjauregui, S. Bhardwaj, J. Yang, C. Castellarin-Cudia, R. Xie, L. D'Arsié, T. Makaryan, H. Sugime, S.E. Fernandez, C. Cepek, and J. Robertson
Carbon 73p.13 - 242014-
H. Tornatzky, D. Hardeman, S. Esconjauregui, L. D'Arsié, R. Xie, H. Sugime, J. Yang, T. Makaryan, C. Thomsen, and J. Robertson
Physica Status Solidi B 250(12) p.2605 - 26102013-
H. Sugime, S. Esconjauregui, J. Yang, L. D'Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson
Appl. Phys. Lett. 103(7) p.731162013-
H. Sugime and S. Noda
Carbon 50(8) p.2953 - 29602012-
D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda
Carbon 50(4) p.1538 - 15452012-
Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda
Jpn. J. of Appl.Phys. 50(9) p.095101-1-72011-
D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda
Carbon 49(6) p.1972 - 19792011-
H. Sugime and S. Noda
Carbon 48(8) p.2203 - 22112010-
S. Noda, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori
Jpn. J. of Appl.Phys. 49(2) p.02BA022010-
Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda
Nanotechnology 20(47) p.475707-1-72009-
T.W.H. Oates, H. Sugime, and S. Noda
J. Phys. Chem. C 113(12) p.4820 - 48282009-
H. Sugime, S. Noda, S. Maruyama, and Y. Yamaguchi
Carbon 47(1) p.234 - 2412009-
Y. Shiratori, H. Sugime, and S. Noda
J. Phys. Chem. C 112(46) p.17974 - 179822008-
K. Hasegawa, S. Noda, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi
J. Nanosci. Nanotechnol. 8(11) p.6123 - 61282008-
Y. Shiratori, K. Furuichi, S. Noda, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi
Jpn. J. of Appl.Phys. 47(6) p.4780 - 47872008-
S. Noda, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi
Carbon 46(17) p.L399 - L4012007-
Reference Number:1961
立体型櫛型電極およびその製造方法(日本)杉目 恒志, 野田 優
2017-166904、2019- 45244
Reference Number:2214
カーボンナノチューブの製造装置および製造方法(日本, PCT)野田 優, 並木 克也, 張 子豪, 大沢 利男, 杉目 恒志
2019-147941
Reference Number:2233
カーボンナノチューブ、その製造方法および製造装置(日本)杉目 恒志, 佐藤 俊裕, 仲川 黎, 野田 優
2019-138466
Reference Number:2296
カーボンナノチューブの製造方法、並びにカーボンナノチューブを含む構造体及び複合体(日本)野田 優, 杉目 恒志, 楊 孟儒, 陳 鵬飛, 仲川 黎
2020-044491
Research Classification:
Growth control of high-density carbon nanotube forests and application to electronic devices2017/-0-2019/-0
Allocation Class:¥4290000
Research Classification:
Growth of long carbon nantotube forest by controlling growth termination2019/-0-2021/-0
Allocation Class:¥6500000
Research Classification:
Active thermal transport control by carrier tuning in van der Waals materials2020/-1-2024/-0
Allocation Class:¥18720000
2016
Research Results Outline:①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレスト①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレストの成長を行った。パターン形状,触媒条件や成長条件がフォレスト構造に与える影響を調べ,レジスト膜厚や...①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレストの成長を行った。パターン形状,触媒条件や成長条件がフォレスト構造に与える影響を調べ,レジスト膜厚やリフトオフ条件の最適化を行った。今後さらに構造の最適化と細胞の培養,また実際に活動電位の測定を目指す。②長尺CNTフォレスト実現CNTフォレストの成長停止のメカニズムの理解と長尺フォレストの実現を目指した。熱CVD法により成長温度や各種ガス分圧が触媒の寿命に与える影響を調べ1cm程度のCNTを成長させることに成功した。今後引き続き成長停止のメカニズムの詳細な理解と制御を行う。
2017
Research Results Outline:カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組み合わせることで高感度なバイオセンサの開発を行った。本研究における熱CVD法によるCNTフォレスト...カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組み合わせることで高感度なバイオセンサの開発を行った。本研究における熱CVD法によるCNTフォレストの成長は470℃と比較的低温であり,成長時間も数分間である。神経伝達物質のモデルケースとしてドーパミンを選択し,L-アスコルビン酸(100 µM)共存下においてPBS中での選択的測定を行った結果,線形領域が100 nM - 100 µM,検出限界(LOD, S/N=3)が42 nMとCNTF-IDEは高い特性を示した。またCNTF-IDEはコンタミネーションに対して高い耐久性を持っており,実用上有用である可能性が示された。
2018
Research Results Outline:カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(Iカーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(IDE)の作製と評価を行った。UVリソグラフィとオリジナルの熱CVD法によるCNT低温成長技術と組合...カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(IDE)の作製と評価を行った。UVリソグラフィとオリジナルの熱CVD法によるCNT低温成長技術と組合せたプロセスを開発した。本プロセスは約500℃と低温でありガラス基板など廉価な基板の使用が可能である。センサとしての特性評価をサイクリックボルタンメトリによって行った結果, Au電極IDEと比較してCNTフォレストIDEでは酸化還元電流が定常状態に早く到達し,反応性の高さが示された。またドーパミンの測定において高い汚染耐性が得られCNTフォレスト電極の有効性が確認された。
Course Title | School | Year | Term |
---|---|---|---|
Material Process Engineering | School of Advanced Science and Engineering | 2018 | spring semester |
Advanced Chemical Engineering A | School of Advanced Science and Engineering | 2018 | spring semester |
Fundamentals of Chemical Engineering | School of Advanced Science and Engineering | 2018 | fall semester |
Fundamentals of Materials Chemistry | School of Advanced Science and Engineering | 2018 | fall semester |
Advanced Chemical Engineering A | Graduate School of Advanced Science and Engineering | 2018 | spring semester |
Advanced Chemical Engineering A | Graduate School of Advanced Science and Engineering | 2018 | spring semester |