Name

SUGIME, Hisashi

Official Title

Junior Researcher(Assistant Professor)

Affiliation

(Research Organization for Nano & Life Innovation)

Contact Information

Mail Address

Mail Address
sugime@aoni.waseda.jp

URL

Web Page URL

http://www.aoni.waseda.jp/sugime/

Grant-in-aids for Scientific Researcher Number
60716398

Academic Society Joined

The Society of Chemical Engineers, Japan

The Fullerene, Nanotubes and Graphene Research Society

The Japan Society of Applied Physics

Award

Young Scientist Award in The Society of Chemical Engineers, Japan (Reaction Engineering Division)

2017/09

Waseda Research Award (High-Impact Publication Category)

2018/12

Research Field

Keywords

carbon nanotube, graphene, nanocarbon, biosensor

Grants-in-Aid for Scientific Research classification

Engineering / Process/Chemical engineering / Reaction engineering/Process system

Paper

Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process

R. Xie, N. Ishijima, H. Sugime, and S. Noda

Sci. Rep. 9p.120512019-

DOIScopusWoS

Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing

Rughoobur, Girish; Rughoobur, Girish; Sugime, Hisashi; Sugime, Hisashi; DeMiguel-Ramos, Mario; Mirea, Teona; Zheng, Shan; Robertson, John; Iborra, Enrique; Flewitt, Andrew John

Sensors and Actuators, B: Chemical 261p.398 - 4072018/05-2018/05

DOIScopus

Detail

ISSN:09254005

Outline:© 2018 Elsevier B.V. A thickness longitudinal mode (TLM) thin film bulk acoustic resonator biosensor is demonstrated to operate in water with a high quality-factor, Q. This is achieved using a layer of carbon nanotubes (CNTs) on top of the resonator which has a significantly different acoustic impedance to either the resonator or liquid whilst being susceptible to the binding of biological molecules. This allows the resonance to be decoupled from direct energy loss into the liquid, although still retaining mass sensitivity. AlN solidly mounted resonators (SMRs) having a thickness shear mode (TSM) at 1.1 GHz and TLM at 1.9 GHz are fabricated. CNTs with different forest densities are grown by chemical vapor deposition on the active area with Fe as the catalyst and resulting devices are compared. High forest density CNTs are shown to acoustically decouple the SMRs from the water and in-liquid TLM Q values higher than 150 are recorded even exceeding TSM SMRs without CNTs. The TLM Q in water is remarkably improved from 3 to 160 for the first time by dense CNT forests, rendering the large-scale fabrication of TLM SMRs for liquid-phase sensing applications possible. Despite this partial isolation, SMRs with CNT forests ∼15 μm tall can still detect binding of bovine serum albumin.

An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors

H. Sugime, T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda

Analyst 143p.3635 - 36422018-

DOI

Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes

S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda

Carbon 138p.1 - 72018-

DOI

CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis

T. Sato, H. Sugime, and S. Noda

Carbon 136p.143 - 1492018-

DOI

Millimeter-tall carbon nanotube arrays grown on aluminum substrates

S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda

Carbon 130p.834 - 8422018-

DOI

Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing

G. Rughoobur, H. Sugime, M. DeMiguel-Ramos, T. Mirea, S. Zheng, J. Robertson, E. Iborra, and A Flewitt

Sensor. Actuat. B-Chem 261p.398 - 4072018-

DOI

Low temperature growth of fully covered single-layer graphene using a CoCu catalyst

H. Sugime, L. D'Arsié, S. Esconjauregui, G. Zhong, X. Wu, E. Hildebrandt, H. Sezen, M. Amati, L. Gregoratti, R.S. Weatherup, J. Robertson

Nanoscale 9(38) p.14467 - 144752017-

DOIScopus

Detail

ISSN:20403364

Outline:© 2017 The Royal Society of Chemistry. A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co-Cu-C ternary phase diagram. Raman spectroscopy confirms the high quality (I D /I G < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties.

From growth surface to device interface: preserving metallic Fe under monolayer hexagonal boron nitride

S. Caneva, M.-B. Martin, L. D'Arsié, A.I. Aria, H. Sezen, M. Amati, L. Gregoratti, H. Sugime, S. Esconjauregui, J. Robertson, S. Hofmann, and R.S. Weatherup

ACS Appl. Mater. Interfaces 9(35) p.29973 - 299812017-

DOI

Ten-Second Epitaxy of Cu on Repeatedly Used Sapphire for Practical Production of High-Quality Graphene

Nagai, Yukuya; Okawa, Asahi; Minamide, Taisuke; Hasegawa, Kei; Sugime, Hisashi; Noda, Suguru

ACS Omega 2(7) p.3354 - 33622017-

DOIScopus

Detail

Outline:© 2017 American Chemical Society. Epitaxial copper (Cu) films yield graphene with superior quality but at high cost. We report 1-3 μm thick epitaxial Cu films prepared on c plane sapphire substrates in 10-30 s, which is much faster than that of the typical sputtering method. Such rapid deposition is realized by vapor deposition using a Cu source heated to 1700-1800 °C, which is much higher than its melting point of 1085 °C. Continuous graphene films, either bilayer or single-layer, are obtained on the epitaxial Cu by chemical vapor deposition and transferred to carrier substrates. The sapphire substrates can be reused five to six times maintaining the quality of the epitaxial Cu films and graphene. The mechanisms and requirements are discussed for such quick epitaxy of Cu on reused sapphire, which will enable high-quality graphene production at lower cost.

Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale

H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R. M. Laine, and S. Noda

Carbon 114p.31 - 382017-

DOI

Stable and efficient p-type doping of graphene by nitric acid,

L. D'Arsié, S. Esconjauregui, R. Weatherup, X. Wu, W.E. Arter, H. Sugime, C. Cepek and J. Robertson

RSC Advances 6p.113185 - 1131922016-

DOI

Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions

X. Wu, G. Zhong, L. D'Arsié, H. Sugime, S. Esconjauregui, A. Robertson, and J. Robertson

Sci. Rep. 6p.211522016-

DOI

Growth of high quality, high density single-walled carbon nanotube forests on copper foils

G. Zhong, J. Yang, H. Sugime, R. Rao, J. Zhao, D. Liu, A. Harutyunyan, and J. Robertson

Carbon 98p.624 - 6322016-

DOI

Carbon nanotube forests as top electrode in electroacoustic resonators

S. Esconjauregui, T. Makaryan, T. Mirea, M. DeMiguel-Ramos, J. Olivares, Y. Guo, H. Sugime, L. D'Arsié, J. Yang, S. Bhardwaj, C. Cepek, J. Robertson, and E. Iborra

Appl. Phys. Lett. 107(8) p.1331062015-

DOI

Efficient transfer doping of carbon nanotube forests by MoO3

S. Esconjauregui, L. D'Arsié, Y. Guo, J. Yang, H. Sugime, S. Caneva, C. Cepek, and J. Robertson

ACS Nano 9(10) p.10422 - 104302015-

DOI

Low temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports

H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson

ACS Appl. Mater. Interfaces 7(30) p.16819 - 168272015-

DOI

Growth of high-density carbon nanotube forests on conductive TiSiN supports

J. Yang, S. Esconjauregui, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, and J. Robertson

Appl. Phys. Lett. 106(8) p.831082015-

DOI

Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports

J. Yang, S. Esconjauregui, H. Sugime, T. Makaryan, T. Hallam, G.S. Duesberg, and J. Robertson

Physica Status Solidi B 251(12) p.2389 - 23932014-

DOI

Growth kinetics and growth mechanism of ultra-high mass density carbon nanotube forests on conductive Ti/Cu supports

H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, T. Makaryan, and J. Robertson

ACS Appl. Mater. Interfaces 6(17) p.15440 - 154472014-

DOI

The effect of oxygen plasma alumina treatment on the growth of carbon nanotube forests,

J. Yang, S. Esconjauregui, R. Xie, H. Sugime, T. Makaryan, L. D'Arsié, D.L.G. Arellano, S. Bhardwaj, C. Cepek, and J. Robertson

J. Phys. Chem. C 118(32) p.18683 - 186922014-

DOI

Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation

T. Makaryan, S. Esconjauregui, M. Goncalves, J. Yang, H. Sugime, D. Nille, P. Renganathan, P. Goldberg, and J. Robertson

ACS Appl. Mater. Interfaces 6(8) p.5344 - 53492014-

DOI

Co-catalytic absorption layers for controlled laser-induced chemical vapor deposition of carbon nanotubes

F.B. Michaelis, R.S. Weatherup, B.C. Bayer, M.C.D. Bock, H. Sugime, S. Caneva, J. Robertson, J.J. Baumberg, and S. Hofmann

ACS Appl. Mater. Interfaces 6(6) p.4025 - 40322014-

DOI

Carbon nanotube growth on conductors: influence of the support structure and catalyst thickness

S. Esconjauregui, S. Bhardwaj, J. Yang, C. Castellarin-Cudia, R. Xie, L. D'Arsié, T. Makaryan, H. Sugime, S.E. Fernandez, C. Cepek, and J. Robertson

Carbon 73p.13 - 242014-

DOI

Evaluation of bimetallic catalysts for the growth of carbon nanotube forests

H. Tornatzky, D. Hardeman, S. Esconjauregui, L. D'Arsié, R. Xie, H. Sugime, J. Yang, T. Makaryan, C. Thomsen, and J. Robertson

Physica Status Solidi B 250(12) p.2605 - 26102013-

DOI

Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

H. Sugime, S. Esconjauregui, J. Yang, L. D'Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson

Appl. Phys. Lett. 103(7) p.731162013-

DOI

Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol

H. Sugime and S. Noda

Carbon 50(8) p.2953 - 29602012-

DOI

Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays

D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda

Carbon 50(4) p.1538 - 15452012-

DOI

Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness

Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda

Jpn. J. of Appl.Phys. 50(9) p.095101-1-72011-

DOI

Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor,

D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda

Carbon 49(6) p.1972 - 19792011-

DOI

Millimeter-tall single-walled carbon nanotube forests growing from ethanol

H. Sugime and S. Noda

Carbon 48(8) p.2203 - 22112010-

DOI

A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates

S. Noda, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori

Jpn. J. of Appl.Phys. 49(2) p.02BA022010-

DOI

Efficient field emission from triode-type 1D arrays of carbon nanotubes

Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda

Nanotechnology 20(47) p.475707-1-72009-

DOI

Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films

T.W.H. Oates, H. Sugime, and S. Noda

J. Phys. Chem. C 113(12) p.4820 - 48282009-

DOI

Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests

H. Sugime, S. Noda, S. Maruyama, and Y. Yamaguchi

Carbon 47(1) p.234 - 2412009-

DOI

Combinatorial evaluation for field emission properties of carbon nanotubes

Y. Shiratori, H. Sugime, and S. Noda

J. Phys. Chem. C 112(46) p.17974 - 179822008-

DOI

Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests

K. Hasegawa, S. Noda, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi

J. Nanosci. Nanotechnol. 8(11) p.6123 - 61282008-

DOI

Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies

Y. Shiratori, K. Furuichi, S. Noda, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi

Jpn. J. of Appl.Phys. 47(6) p.4780 - 47872008-

DOI

Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support

S. Noda, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi

Carbon 46(17) p.L399 - L4012007-

DOI

A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes

S. Noda, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama

Carbon 44(8) p.1414 - 14192006-

DOI

Patent

Reference Number:1961

立体型櫛型電極およびその製造方法(日本)

杉目 恒志, 野田 優

2017-166904、2019- 45244

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:

Growth control of high-density carbon nanotube forests and application to electronic devices

2017/-0-2019/-0

Allocation Class:¥4290000

On-campus Research System

Special Research Project

高密度カーボンナノチューブフォレストの構造制御とデバイス応用

2016

Research Results Outline:①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレスト①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレストの成長を行った。パターン形状,触媒条件や成長条件がフォレスト構造に与える影響を調べ,レジスト膜厚や...①導電性基板上CNTフォレストの微小電極アレイへの応用電子線描画を用いて触媒エリアの直径を1µm程度に設計して担持し,導電性下地上へのCNTフォレストの成長を行った。パターン形状,触媒条件や成長条件がフォレスト構造に与える影響を調べ,レジスト膜厚やリフトオフ条件の最適化を行った。今後さらに構造の最適化と細胞の培養,また実際に活動電位の測定を目指す。②長尺CNTフォレスト実現CNTフォレストの成長停止のメカニズムの理解と長尺フォレストの実現を目指した。熱CVD法により成長温度や各種ガス分圧が触媒の寿命に与える影響を調べ1cm程度のCNTを成長させることに成功した。今後引き続き成長停止のメカニズムの詳細な理解と制御を行う。

導電性基板上での高密度カーボンナノチューブフォレストの構造制御と電子デバイス応用

2017

Research Results Outline:カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組み合わせることで高感度なバイオセンサの開発を行った。本研究における熱CVD法によるCNTフォレスト...カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,UVリソグラフィと金属電極上への高密度CNTフォレストの成長技術を組み合わせることで高感度なバイオセンサの開発を行った。本研究における熱CVD法によるCNTフォレストの成長は470℃と比較的低温であり,成長時間も数分間である。神経伝達物質のモデルケースとしてドーパミンを選択し,L-アスコルビン酸(100 µM)共存下においてPBS中での選択的測定を行った結果,線形領域が100 nM - 100 µM,検出限界(LOD, S/N=3)が42 nMとCNTF-IDEは高い特性を示した。またCNTF-IDEはコンタミネーションに対して高い耐久性を持っており,実用上有用である可能性が示された。

導電性基盤上でのカーボンナノチューブフォレストの構造制御と電気化学センサへの応用

2018

Research Results Outline:カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(Iカーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(IDE)の作製と評価を行った。UVリソグラフィとオリジナルの熱CVD法によるCNT低温成長技術と組合...カーボンナノチューブ(CNT)が基板に垂直配向成長している「フォレスト」を利用し,高感度で耐久性のある小型バイオセンサ応用を目指した立体型櫛型電極(IDE)の作製と評価を行った。UVリソグラフィとオリジナルの熱CVD法によるCNT低温成長技術と組合せたプロセスを開発した。本プロセスは約500℃と低温でありガラス基板など廉価な基板の使用が可能である。センサとしての特性評価をサイクリックボルタンメトリによって行った結果, Au電極IDEと比較してCNTフォレストIDEでは酸化還元電流が定常状態に早く到達し,反応性の高さが示された。またドーパミンの測定において高い汚染耐性が得られCNTフォレスト電極の有効性が確認された。

Lecture Course

Course TitleSchoolYearTerm
Material Process EngineeringSchool of Advanced Science and Engineering2018spring semester
Advanced Chemical Engineering ASchool of Advanced Science and Engineering2018spring semester
Fundamentals of Chemical EngineeringSchool of Advanced Science and Engineering2018fall semester
Fundamentals of Materials ChemistrySchool of Advanced Science and Engineering2018fall semester
Advanced Chemical Engineering AGraduate School of Advanced Science and Engineering2018spring semester
Advanced Chemical Engineering AGraduate School of Advanced Science and Engineering2018spring semester