Name

KUNIMOTO, Masahiro

Official Title

Assistant Professor(without tenure)

Affiliation

(School of Advanced Science and Engineering)

Contact Information

Mail Address

Mail Address
kmasahiro@aoni.waseda.jp

URL

Web Page URL

http://www.sc.appchem.waseda.ac.jp/(lab URL)

Grant-in-aids for Scientific Researcher Number
60619237

Educational background・Degree

Degree

Doctor of Engineering Waseda University

Paper

Spectroscopic and Computational Analyses of Liquid–Liquid Interfacial Reaction Mechanism of Boric Acid Esterification with 2,2,4-Trimethyl-1,3-pentanediol in Boron Extraction Processes

M. Kunimoto, D. Bothe, R. Tamura, T. Oyanagi, Y. Fukunaka, H. Nakai, T. Homma

J. Phys. Chem. C 122(19) p.10423 - 104292018-

Direct observation of the diffusion behavior of an electrodeposition additive in through-silicon via using in situ surface enhanced Raman spectroscopy

T. Homma, A. Kato, M. Kunimoto, M. Yanagisawa

Electrochem. Commun. 88p.34 - 382018-

Surface enhanced Raman spectroscopy measurement of surface pH at the electrode during Ni electrodeposition reaction

T. Homma, M. Kunimoto, M. Sasaki, T. Hanai, M. Yanagisawa

J. Appl. Electrochem. 48(6) p.561 - 5672018-

Analysis of Cathodic Reaction Process of SiCl4 during Si Electrodeposition in Ionic Liquids

Y. Tsuyuki, T. Fujimura, M. Kunimoto, Y. Fukunaka, P. Pianetta, T. Homma

J. Electrochem. Soc. 164(14) p.D994 - D9982017-

Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscop

Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma

Spectrochim. Acta, Part A 184p.1 - 62017-

Fabrication of Channel Type Mixing Devices for Efficient Solvent Extraction for High Purity Silica Production

Y. V. Akash, M. Mimura, M. Kunimoto, Y. Fukunaka, T. Homma

ECS Trans. 80(10) p.1441 - 14462017-

Transmission-type plasmonic sensors for surface-enhanced Raman spectroscopy

M. Yanagisawa, M. Saito, M. Kunimoto, T. Homma

Appl. Phys. Express 9(12) p.1220022016-

Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma

Appl. Surf. Sci. 363p.572 - 5772016-

Theoretical Study on the Formation Mechanism of Amino Acid-Cu(II) Complexes on an Enantioi-Sensing Device Interface

M. Kunimoto, Y. Sadaoka, T. Nakanishi, T. Osaka

J. Phys. Chem. C 120(9) p.15722 - 157282016-

Select this article Elimination of Boron from Soluble Silica Via Solvent Extraction with 2,2,4-Trimethyl-1,3-Pentanediol Using a Multistage Flow-Type Reactor

N. Matsuo, T. Ishihara, T. Oyanagi, K. Nakajima, M. Kunimoto, Y. Fukunaka, T. Homma

ECS Trans. 64(45) p.91 - 972015-

Theoretical Analysis of Catalytic Reaction Mechanism of BH4- on Cu and Pd Surface in Electroless Depositioin Process

M. Kunimoto, H. Nakai, T. Homma

J. Surf. Finish. Soc. Jpn. 66(12) p.666 - 6692015-

DFT Analysis on Cathodic Reaction of Au Thiosulfate Complex at Au(111) Surface – Cathodic Reaction Modeling

M. Kunimoto, H. Nakai, T. Homma

ECS Trans. 58(32) p.73 - 792014-

Theoretical analysis of the influence of surface defects on the reactivity of hypophosphite ions

M. Kunimoto, A. Otomo, N. Takahashi, H. Nakai, T. Homma

Electrochim. Acta 113p.785 - 7912013-

Acceleration Effect of Thiourea on the Oxidation Reaction of Hypophosphite Ion on Ni Surface

M. Kunimoto, K. Endo, H. Nakai, T. Homma

Electrochim. Acta 100p.311 - 3162013-

Raman and DFT Study of the Reaction of Hydrazine and Hypophosphite on a Cu Surface in the Electroless Deposition Process

B. Jiang, S. Wodarz, M. Kunimoto, M. Yanagisawa, T. Homma

Electrochemistry 81(9) p.674 - 6772013-

Effect of Thiourea on Oxidation of Hypophosphite Ions on Ni Surface Investigated by Raman Spectroscopy and DFT Calculation

B. Jiang, M. Kunimoto, M. Yanagisawa, T. Homma

J. Electrochem. Soc. 160(9) p.D366 - D3712013-

Analysis of hydrazine on a Cu surface with nanoscale resolution using surface enhanced Raman spectroscopy

B. Jiang, T. Ouchi, N. Shimano, A. Otomo, M. Kunimoto, M. Yanagisawa, T. Homma

Electrochim. Acta 100p.317 - 3202013-

Theoretical Analysis of Adsorption Structure of Hydrated Hypophosphite Ion on Pd(111) Surface

M. Kunimoto, K. Seki, H. Nakai, T. Homma

Electrochemistry 80(4) p.222 - 2252012-

Theoretical Analysis of Catalytic Activity of Metal Surfaces on Reaction of Hypophosphite Ion

M. Kunimoto, H. Nakai, T. Homma

Electrochemistry 80(3) p.126 - 1312012-

Density Functional Theory Analysis for Orbital Interaction between Hypophosphite Ions and Metal Surfaces

M. Kunimoto, H. Nakai, T. Homma

J. Electrochem. Soc. 158(10) p.D626 - D6332011-

Density Functional Theory Analysis of Reaction Mechanism of Hypophosphite Ions on Metal Surfaces

M. Kunimoto, T. Shimada, S. Odagiri, H. Nakai, T. Homma

J. Electrochem. Soc. 158(9) p.D585 - D5892011-

Research Trends in Electroless Plating Process

M. Kunimoto, T. Homma

J. Surf. Finish. Soc. Jpn. 66(10) p.438 - 4422015-

Quantum Chemical Analysis of Electroless Deposition Processes

M. Kunimoto, T. Homma

J. Surf. Finish. Soc. Jpn. 62(12) p.657 - 6622011-

Lecture And Oral

Electrochemical Fabrication of Micro/nano Structured Plasmonic Sensors for Surface Enhanced Raman Scattering Analysis

M. Kunimoto, T. Homma, M. Bertz, M. Saito, M. Yanagisawa

69th Annual Meeting of the International Society of Electrochemistry2018/.0/9.

Detail

Venue:Bologna

Patent

Reference Number:1868

金属シリコン製造用アーク炉(日本)

本間 敬之, 國本 雅宏, 福中 康博

2017- 3946、2018-111637

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:

Electrochemical processing of initial nucleation control for large scale energy storage devices

2013/-0-2016/-0

Allocation Class:¥45890000

On-campus Research System

Special Research Project

Liイオン二次電池電極におけるSEI形成過程の高精度in-situラマン解析

2018

Research Results Outline: 本研究では,Liイオン二次電池の負極表面において形成される電解液分解生成物層,いわゆるSEI層の形成をin situで観察し,その形成過程を明らかに 本研究では,Liイオン二次電池の負極表面において形成される電解液分解生成物層,いわゆるSEI層の形成をin situで観察し,その形成過程を明らかにすることを目的とした.観察・解析には,本研究者がこれまでに構築してきた表界面分光分析法としての表面... 本研究では,Liイオン二次電池の負極表面において形成される電解液分解生成物層,いわゆるSEI層の形成をin situで観察し,その形成過程を明らかにすることを目的とした.観察・解析には,本研究者がこれまでに構築してきた表界面分光分析法としての表面増強ラマン測定(SERS)システムを,さらに発展させたシステムを応用した.電解液にはEC/EMC+1 mol/L LiPF6を,負極にはグラファイト,そして正極にはLiCoO2を,それぞれ適用した.解析の結果,SEI形成は2つの電圧領域で生じることが明らかになった.より正の電圧領域で形成されるSEI層は不安定であり,SEI層形成と成長には主に,2つの中でもより負の電圧領域である第二段階が大きく寄与するものと示唆された.

Lecture Course

Course TitleSchoolYearTerm
Science and Engineering Laboratory 1A IVSchool of Fundamental Science and Engineering2020spring semester
Science and Engineering Laboratory 1A IVSchool of Creative Science and Engineering2020spring semester
Science and Engineering Laboratory 1A IVSchool of Advanced Science and Engineering2020spring semester
Science and Engineering Laboratory 1B ISchool of Fundamental Science and Engineering2020fall semester
Science and Engineering Laboratory 1B ISchool of Creative Science and Engineering2020fall semester
Science and Engineering Laboratory 1B ISchool of Advanced Science and Engineering2020fall semester
Inorganic and Analytical Chemistry Laboratory ISchool of Advanced Science and Engineering2020fall semester
Inorganic and Analytical Chemistry Laboratory I [S Grade]School of Advanced Science and Engineering2020fall semester
Applied Chemistry: GeneralSchool of Advanced Science and Engineering2020spring semester
Applied Chemistry: General [S Grade]School of Advanced Science and Engineering2020spring semester
Introduction to Applied ChemistrySchool of Advanced Science and Engineering2020fall semester
Introduction to Applied ChemistrySchool of Advanced Science and Engineering2020fall semester
Fundamentals of Materials ChemistrySchool of Advanced Science and Engineering2020fall semester
Fundamentals of Materials ChemistrySchool of Advanced Science and Engineering2020fall semester
Introduction to Industrial ChemistrySchool of Advanced Science and Engineering2020spring semester
Introduction to Industrial ChemistrySchool of Advanced Science and Engineering2020spring semester
Seminar on Power and Energy MaterialsGraduate School of Fundamental Science and Engineering2020an intensive course(spring and fall)
Seminar on Power and Energy MaterialsGraduate School of Creative Science and Engineering2020an intensive course(spring and fall)
Seminar on Power and Energy MaterialsGraduate School of Advanced Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence I (Energy material)Graduate School of Fundamental Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence I (Energy material)Graduate School of Creative Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence I (Energy material)Graduate School of Advanced Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence II (Energy material)Graduate School of Fundamental Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence II (Energy material)Graduate School of Creative Science and Engineering2020an intensive course(spring and fall)
Practical Seminar on Technological Excellence II (Energy material)Graduate School of Advanced Science and Engineering2020an intensive course(spring and fall)
Joint Seminar on nano-scale scienceGraduate School of Advanced Science and Engineering2020spring quarter
Joint Seminar on materials design scienceGraduate School of Advanced Science and Engineering2020spring quarter