Name

OHSHIMA, Toshio

Official Title

Professor

Affiliation

(School of Advanced Science and Engineering)

Contact Information

URL

Web Page URL

http://www.ohshima.biomed.sci.waseda.ac.jp/

Grant-in-aids for Scientific Researcher Number
20311334

Sub-affiliation

Sub-affiliation

Faculty of Science and Engineering(Graduate School of Advanced Science and Engineering)

Research Council (Research Organization)/Affiliated organization(Global Education Center)

Affiliated Institutes

欧州バイオメディカルサイエンス研究所

研究所員 2011-2012

欧州バイオメディカルサイエンス研究所

研究所員 2009-2011

欧州バイオメディカルグリーンサイエンス研究所

研究所員 2012-2014

ライフサポートイノベーション研究所

研究所員 2014-2014

早稲田バイオサイエンスシンガポール研究所

研究所員 2017-

欧州バイオメディカルグリーンサイエンス研究所

研究所員 2015-2016

グローバルバイオメディカルグリーンサイエンス研究所

研究所員 2016-2017

グローバルバイオメディカルグリーンサイエンス研究所

研究所員 2017-2018

学際融合脳科学研究所

研究所員 2018-

理工学術院総合研究所(理工学研究所)

兼任研究員 2018-

ライフサポートイノベーション研究所

研究所員 2015-2019

ライフサポートイノベーション研究所

研究所員 2019-

Educational background・Degree

Degree

MD, PhD Coursework Yamanashi Medical University General medical chemistry

Research Field

Grants-in-Aid for Scientific Research classification

Biological Sciences / Neuroscience / Neurochemistry/Neuropharmacology

Biological Sciences / Neuroscience / Nerve anatomy/Neuropathology

Research interests Career

2006-Proteomics of Brain Development

Individual research allowance

1996-Research on the Molecular Mechanism of Brain Development and Function

Individual research allowance

Paper

Genetic deletion of Crmp4 promotes axonal regrowth after spinal cord injury by reducing microtubule destabilization and inflammatory responses.

Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Yoshio Goshima Y, Ohshima T.

Sci. Rep 5p.82692015-

Neuronal migration and protein kinases

Ohshima, Toshio

FRONTIERS IN NEUROSCIENCE 8p.4582015-2015

DOIWoS

Detail

ISSN:1662-453X

Cdk5/p35 functions as a crucial regulator of spatial learning and memory.

Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, Ohshima T.

Mol Brain 7p.822015-

Cdk5/p35 is required for motor coordination and cerebellar plasticity.

He Xiaojuan;Ishizeki Masato;Mita Naoki;Wada Seitaro;Araki Yoshifumi;Ogura Hiroo;Abe Manabu;Yamazaki Maya;Sakimura Kenji;Mikoshiba Katsuhiko;Inoue Takafumi;Ohshima Toshio

Cdk5/p35 is required for motor coordination and cerebellar plasticity. 131(1) p.53 - 642014-2014

DOIWoS

Detail

ISSN:1471-4159

Outline::Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell-specific conditional Cdk5/p35 knockout (L7-p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota-rod test, and performed electrophysiological recordings to assess long-term synaptic plasticity. Our analyses showed that Purkinje cell-specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long-term synaptic plasticity was observed at the parallel fiber-Purkinje cell synapse in L7-p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long-term synaptic plasticity.

Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons.

Nishimura Yoshiaki V;Shikanai Mima;Hoshino Mikio;Ohshima Toshio;Nabeshima Yo-ichi;Mizutani Ken-Ichi;Nagata Koh-Ichi;Nakajima Kazunori;Kawauchi Takeshi

Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. 141(18) p.3540 - 35502014-2014

DOIWoS

Detail

ISSN:1477-9129

Outline::Neuronal migration is crucial for development of the mammalian-specific six-layered cerebral cortex. Migrating neurons are known to exhibit distinct features; they form a cytoplasmic dilation, a structure specific to migrating neurons, at the proximal region of the leading process, followed by nuclear elongation and forward movement. However, the molecular mechanisms of dilation formation and nuclear elongation remain unclear. Using ex vivo chemical inhibitor experiments, we show here that rottlerin, which is widely used as a specific inhibitor for PKCδ, suppresses the formation of a cytoplasmic dilation and nuclear elongation in cortical migrating neurons. Although our previous study showed that cortical neuronal migration depends on Jnk, another downstream target of rottlerin, Jnk inhibition disturbs only the nuclear elongation and forward movement, but not the dilation formation. We found that an unconventional cyclin-dependent kinase, Cdk5, is a novel downstream target of rottlerin, and that pharmacological or knockdown-mediated inhibition of Cdk5 suppresses both the dilation formation and nuclear elongation. We also show that Cdk5 inhibition perturbs endocytic trafficking as well as microtubule organization, both of which have been shown to be required for dilation formation. Furthermore, knockdown of Dcx, a Cdk5 substrate involved in microtubule organization and membrane trafficking, or p27(kip1), another Cdk5 substrate involved in actin and microtubule organization, disturbs the dilation formation and nuclear elongation. These data suggest that Cdk5 and its substrates, Dcx and p27(kip1), characterize migrating neuron-specific features, cytoplasmic dilation formation and nuclear elongation in the mouse cerebral cortex, possibly through the regulation of microtubule organization and an endocytic pathway.

Phosphorylation of Cdk5 at Tyr15 is inhibited by the Cdk5 activator p35 and does not contribute the activation of Cdk5.

Kobayashi H, Saito T, Sato K, Hosokawa T, Tsutsumi K, Asada A, Kamata S, OhshimaT, Hisanaga S-I,

J. Biol. Chem 289p.19627 - 196362014-

Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA.

Takahashi Miyuki;Ishida Manami;Saito Taro;Ohshima Toshio;Hisanaga Shin-Ichi

Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA. 447(4) p.678 - 6822014-2014

DOIWoS

Detail

ISSN:1090-2104

Outline::The cyclin-dependent kinase 5 (Cdk5) is a neuron-specific Ser/Thr kinase that is activated by the regulatory subunit p35. Overactivation of Cdk5, which is induced by the cleavage of p35 by calpain, is implicated in neuronal death in various neurodegenerative diseases. In contrast, depletion of the Cdk5 activity renders neurons vulnerable to stresses. Recent reports suggest the involvement of Cdk5 in mental disorders. We hypothesized that perturbation of Cdk5 activity is related to mental conditions. To verify this hypothesis, we investigated the effect of valproic acid (VPA), which is a drug of choice for psychiatric disorders, on Cdk5 activity. VPA decreased the expression of p35 at both the protein and mRNA levels in cultured neurons, resulting in a decrease of Cdk5 activity. VPA decreased the p35 mRNA via histone deacetylase inhibition. The chronic administration of VPA also downregulated p35 in mouse brains. These results indicate that VPA regulates Cdk5 activity in neurons via p35 transcription mediated by HDAC inhibition.

Impairments of long-term depression induction and motor coordination precede Aβ accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice.

Kuwabara Yuki;Ishizeki Masato;Watamura Naoto;Toba Junya;Yoshii Aya;Inoue Takafumi;Ohshima Toshio

Impairments of long-term depression induction and motor coordination precede Aβ accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice. 130(3) p.432 - 4432014-2014

DOIWoS

Detail

ISSN:1471-4159

Outline::Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β- and γ-secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long-term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 onths of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre-Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

Phosphorylation of Drebrin by Cdk5 and its role in neuronal migration.

Tanabe K., Yamazaki J, Inaguma H, Asada A, Kimura T, Takahashi J, Taoka M, Ohshima T, Furuichi T, Isobe T, Nagata K, Shirao T, Hisanaga SI.

PlosOne 9p.3

Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum.

Dozawa Miki;Kono Hiromitsu;Sato Yuki;Ito Yoko;Tanaka Hideomi;Ohshima Toshio

Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. 243(11) p.1401 - 14152014-2014

DOIWoS

Detail

ISSN:1097-0177

Outline:BACKGROUND:Valproic acid (VPA) has been used to treat epilepsy and bipolar disorder. Several reports have demonstrated that VPA functions as a histone deacetylase (HDAC) inhibitor. While VPA is known to cause teratogenic changes in the embryonic zebrafish brain, its effects on neural stem cells (NSCs) in both the embryonic and adult zebrafish are not well understood.;RESULTS:In this study, we observed a proliferative effect of VPA on NSCs in the embryonic hindbrain. In contrast, VPA reduced cell proliferation in the adult zebrafish optic tectum. Treatment with HDAC inhibitors showed a similar inhibitory effect on cell proliferation in the adult zebrafish optic tectum, suggesting that VPA reduces cell proliferation through HDAC inhibition. Cell cycle progression was also suppressed in the optic tectum of the adult zebrafish brain because of HDAC inhibition. Recent studies have demonstrated that HDAC inhibits the Notch signaling pathway; hence, adult zebrafish were treated with a Notch inhibitor. This increased the number of proliferating cells in the adult zebrafish optic tectum with down-regulated expression of her4, a target of Notch signaling.;CONCLUSIONS:These results suggest that VPA inhibits HDAC activity and upregulates Notch signaling to reduce cell proliferation in the optic tectum of adult zebrafish.

Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPAR gamma agonist improves neuronal loss and early lethality

Utreras, Elias;Hamada, Ryusuke;Prochazkova, Michaela;Terse, Anita;Takahashi, Satoru;Ohshima, Toshio;Kulkarni, Ashok B.

JOURNAL OF NEUROINFLAMMATION 11p.282014-2014

DOIWoS

Detail

ISSN:1742-2094

p35 Deficiency Accelerates HMGB-1-mediated Neuronal Death in the Early Stages of an Alzheimer's disease Mouse Model

Jang, Ahram;Liew, Hyunjeong;Kim, Yun-Mi;Choi, Heesoon;Kim, Saeromi;Lee, Sang Hyung;Ohshima, Toshio;Mikoshiba, Katsuhiko;Suh, Yoo-Hun

CURRENT ALZHEIMER RESEARCH 10(8) p.829 - 8432013-2013

WoS

Detail

ISSN:1567-2050

ual origin of the mammalian accessory olfactory bulb revealed by an an evolutionarily conserved long distance migratory stream.

Huilgol D, Udin S, Shimogori T, Saha B, Roy A, Aizawa S, Hevner R, Meyer G, Ohshima T, Pleasure SJ, Zhao Y, Tole S.

Nat. Neurosci. 16p.157 - 1652013-

Identification and Expression Analysis of the Zebrafish Homologs of the ceramide synthase Gene Family

Brondolin, Mirco;Berger, Susanne;Reinke, Michael;Tanaka, Hideomi;Ohshima, Toshio;Fuss, Bernhard;Hoch, Michael

DEVELOPMENTAL DYNAMICS 242(2) p.189 - 2002013-2013

DOIWoS

Detail

ISSN:1058-8388

Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord.

Morimura Rii;Nozawa Keisuke;Tanaka Hideomi;Ohshima Toshio

Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord. 73(12) p.911 - 9202013-2013

DOIWoS

Detail

ISSN:1932-846X

Outline::Dpysls (CRMPs) that were initially identified as mediator proteins of Semaphorin3a (Sema3a) signaling are involved in neuronal polarity and axon elongation in cultured neurons. Previous studies have shown that knockdown of neuropilin1a, one of the sema3a receptors, exhibited ectopic primary motor neurons (PMNs) outside of the spinal cord in zebrafish. However, downstream molecules of sema3a signaling involved in the positioning of motor neurons are largely unknown. Here, we addressed the role of Dpysl2 (CRMP2) and Dpysl3 (CRMP4) in the positioning of PMNs in the zebrafish spinal cord. We found that the knockdown of dpysls by antisense morpholino oligonucleotides (AMO) causes abnormal positioning of caudal primary (CaP) motor neurons outside the spinal cord. The knockdown of cdk5 and dyrk2 by AMO also caused similar phenotype in the positioning of CaP motor neurons, and this phenotype was rescued by co-injection of phosphorylation-mimic type dpysl2 mRNA. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and Dyrk2 is required for correct positioning of CaP motor neurons in the zebrafish spinal cord.

Amyloid-b25-35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapseinresponse mediator protein 2.

Isono T, Yamashita N, Nakamura F, Obara M, Kamiya Y, Nitta A, Nabeshima T, Ohshima T, Mikoshiba K, Goshima Y.

Neurosci. Res. 77p.180 - 1852013-

IP(3)R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice

Hisatsune, Chihiro;Miyamoto, Hiroyuki;Hirono, Moritoshi;Yamaguchi, Naohide;Sugawara, Takeyuki;Ogawa, Naoko;Ebisui, Etsuko;Ohshima, Toshio;Yamada, Masahisa;Hensch, Takao K.;Hattori, Mitsuharu;Mikoshiba, Katsuhiko

FRONTIERS IN NEURAL CIRCUITS 7p.1562013-2013

DOIWoS

Detail

ISSN:1662-5110

Cdk5 regulates the function of CLOCK protein by direct phosphorylation.

Kwak Y, Jeong J, Lee S, Park YU, Lee SA, Han DH, Kim JH, Ohshima T, Mikoshiba K, Suh YH, Cho S

J. Biol. Chem. 288p.36878 - 368892013-

Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons.

Niisato Emi;Nagai Jun;Yamashita Naoya;Nakamura Fumio;Goshima Yoshio;Ohshima Toshio

Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons. 73(2) p.142 - 1512013-2013

DOIWoS

Detail

ISSN:1932-846X

Outline::The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild-type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A-/-, p35-/-, and CRMP4-/- mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A-induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35-phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4-/- mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4-/- embryos showed an increased number of dendritic branching points compared to those from wild-type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild-type hippocampal neurons, but these effects of Sema3A for dendrites were not observed in CRMP2KI/KI and CRMP2KI/KI;CRMP4-/-hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4-/- brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons.

Cyclin-dependent kinase 5 is required for normal cerebellar development

Kumazawa A, Mita N, Hirasawa M, Adachi T, Suzuki H, Shafeghat N, Kulkarni AB, Mikoshiba K, Inoue T, Ohshima T.

Mol Cell Neurosci. 52p.97 - 1052013-

Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development

Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, et al.

PLoS ONE 7(6) p.e397142012-

Phosphorylation of CRMP2 (Collapsin Response Mediator Protein 2) Is Involved in Proper Dendritic Field Organization

Yamashita, Naoya;Ohshima, Toshio;Nakamura, Fumio;Kolattukudy, Papachan;Honnorat, Jerome;Mikoshiba, Katsuhiko;Goshima, Yoshio

JOURNAL OF NEUROSCIENCE 32(4) p.1360 - 13652012-2012

DOIWoS

Detail

ISSN:0270-6474

Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish.

Tanaka Hideomi;Morimura Rii;Ohshima Toshio

Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish. 370(2) p.223 - 2362012-2012

DOIWoS

Detail

ISSN:1095-564X

Outline::Dpysl2 (CRMP2) and Dpysl3 (CRMP4) are involved in neuronal polarity and axon elongation in cultured neurons. These proteins are expressed in various regions of the developing nervous system, but their roles in vivo are largely unknown. In dpysl2 and dpysl3 double morphants, Rohon-Beard (RB) primary sensory neurons that were originally located bilaterally along the midline shifted their position to a more medial location in the dorsal-most part of spinal cord. A similar phenotype was observed in the cdk5 and dyrk2 double morphants. Dpysl2 and Dpysl3 phosphorylation mimics recovered this phenotype. Cell transplantation analysis demonstrated that this ectopic RB cell positioning was non-cell autonomous and correlated with the abnormal position of neural crest cells (NCCs), which also occupied the dorsal-most part of the spinal cord during the neural rod formation stage. The cell position of other interneuron and motor neurons within the central nervous system was normal in these morphants. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and DYRK2 is required for the proper positioning of RB neurons and NCCs during neurulation in zebrafish embryos.

CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against Vincristine-induced axonal degeneration.

Nagai Jun;Goshima Yoshio;Ohshima Toshio

CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against Vincristine-induced axonal degeneration. 519(1) p.56 - 612012-2012

DOIWoS

Detail

ISSN:1872-7972

Outline::Suppression of inhibition of axonal outgrowth and promotion of axonal protection from progressive axonal degeneration are both therapeutic strategies for the treatment of neuronal diseases characterized by axonal loss. Myelin-associated inhibitors (MAIs) have been shown to suppress axonal outgrowth, but a specific MAI, myelin-associated glycoprotein (MAG), has also been shown to protect neurons from axonal degeneration through activation of the small GTPase protein RhoA. Recent in vitro studies have shown that collapsin response mediator protein 4 (CRMP4) interacts with RhoA and that the CRMP4b/RhoA complex mediates MAG-induced inhibitory signaling against axonal outgrowth. However, whether CRMP4 is involved in MAG-mediated axon protection signaling remains unclear. Here, we show involvement of CRMP4 in MAG-induced inhibition of axonal outgrowth and axonal protection using the CRMP4-/- mouse model. In dorsal root ganglion (DRG) neurons, loss of CRMP4 prevents MAG-induced inhibition of axonal outgrowth and growth cone collapse and increases sensitivity to microtubule destabilizing factor Vincristine (VNC)-induced axonal degeneration. MAG-mediated axon protection against VNC is suppressed in CRMP4-/- DRG neurons. Understanding the molecular mechanism of MAG-mediated inhibition and protection via CRMP4 may provide novel opportunities to control axonal degeneration and regeneration.

CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus.

Niisato Emi;Nagai Jun;Yamashita Naoya;Abe Takaya;Kiyonari Hiroshi;Goshima Yoshio;Ohshima Toshio

CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. 72(11) p.1447 - 14572012-2012

DOIWoS

Detail

ISSN:1932-846X

Outline::Collapsin response mediator proteins (CRMPs) are a family of cytosolic phosphoproteins that consist of 5 members (CRMP 1-5). CRMP2 and CRMP4 regulate neurite outgrowth by binding to tubulin heterodimers, resulting in the assembly of microtubules. CRMP2 also mediates the growth cone collapse response to the repulsive guidance molecule semaphorin-3A (Sema3A). However, the role of CRMP4 in Sema3A signaling and its function in the developing mouse brain remain unclear. We generated CRMP4-/- mice in order to study the in vivo function of CRMP4 and identified a phenotype of proximal bifurcation of apical dendrites in the CA1 pyramidal neurons of CRMP4-/- mice. We also observed increased dendritic branching in cultured CRMP4-/- hippocampal neurons as well as in cultured cortical neurons treated with CRMP4 shRNA. Sema3A induces extension and branching of the dendrites of hippocampal neurons; however, these inductions were compromised in the CRMP4-/- hippocampal neurons. These results suggest that CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus and that this is partly dependent on Sema3A signaling.

Hypomyelination phenotype caused by impaired differentiation of oligodendrocytes in Emx1-cre mediated Cdk5 conditional knockout mice.

He Xiaojuan;Takahashi Satoru;Suzuki Hiromi;Hashikawa Tsutomu;Kulkarni Ashok B;Mikoshiba Katsuhiko;Ohshima Toshio

Hypomyelination phenotype caused by impaired differentiation of oligodendrocytes in Emx1-cre mediated Cdk5 conditional knockout mice. 36(7) p.1293 - 13032011-2011

DOIWoS

Detail

ISSN:1573-6903

Outline::Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in neuronal migration and differentiation, and in axonal elongation. Although many studies have been conducted to analyze neuronal functions of Cdk5, its kinase activity has also been reported during oligodendrocyte differentiation, which suggests Cdk5 may play an important role in oligodendrocytes. Here, we describe a hypomyelination phenotype observed in Emx1-cre mediated Cdk5 conditional knockout (cKO) mice (Emx1-cKO), in which the Cdk5 gene was deleted in neurons, astrocytes and oligodendrocyte -lineage cells. In contrast, the Cdk5 gene in CaMKII cKO mice was deleted only in neurons. Because the development of mature oligodendrocytes from oligodendrocyte precursor cells is a complex process, we performed in situ hybridization using markers for the oligodendrocyte precursor cell and for the differentiated oligodendrocyte. Our results indicate that hypomyelination in Emx1-cKO is due to the impaired differentiation of oligodendrocytes, rather than to the proliferation or migration of their precursors. The present study confirmed the in vivo role of Cdk5 in oligodendrocyte differentiation.

Islet1 Selectively Promotes Peripheral Axon Outgrowth in Rohon-Beard Primary Sensory Neurons

Tanaka, Hideomi;Nojima, Yasuhiro;Shoji, Wataru;Sato, Miki;Nakayama, Ryoko;Ohshima, Toshio;Okamoto, Hitoshi

DEVELOPMENTAL DYNAMICS 240(1) p.9 - 222011-2011

DOIWoS

Detail

ISSN:1058-8388

JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration.

Jin Junghee;Suzuki Hiromi;Hirai Syu-Ichi;Mikoshiba Katsuhiko;Ohshima Toshio

JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration. 70(14) p.929 - 9422010-2010

DOIWoS

Detail

ISSN:1932-846X

Outline::Doublecortin (DCX) is expressed in young neurons and functions as a microtubule-associated protein. DCX is essential for neuronal migration because humans with mutations in the DCX gene exhibit cortical lamination defects known as lissencephaly in males and subcortical laminar heterotopia (or double cortex syndrome) in females. Phosphorylation of DCX alters its affinity for tubulin and may modulate neurite extension and neuronal migration. Previous in vitro phosphorylation experiments revealed that cyclin-dependent kinase 5 (Cdk5) phosphorylates multiple sites of DCX, including Ser332, (S332). However, phosphorylation at only Ser297 has been shown in vivo. In the present study, we examined phosphorylation of S332 of DCX in the Cdk5-/- mouse brain and results found, unexpectedly, indicate an increased DCX phosphorylation at S332. We found that JNK, not Cdk5, phosphorylates DCX at S332 in vivo. To examine the physiological significance of S332 phosphorylation of DCX in neuronal cells, we transfected cells with either GFP, GFP-DCX-WT, or GFP-DCX-S332A and analyzed neurite extension and migration. Introduction of GFP-DCX-WT enhanced neurite extension and migration. These effects of DCX introduction were suppressed when we used GFP-DCX-S332A. Treatment of neurons with JNK inhibitor increased the amount of DCX that bound to tubulin. Interestingly, amount of DCX that bound to tubulin decreased in Cdk5-/- brain homogenates, which indicates that phosphorylation of DCX by JNK is critical for the regulation of DCX binding to tubulin. These results suggest the physiological importance of phosphorylation of DCX for its function.

Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum.

Ito Yoko;Tanaka Hideomi;Okamoto Hitoshi;Ohshima Toshio

Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. 342(1) p.26 - 382010-2010

DOIWoS

Detail

ISSN:1095-564X

Outline::In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions-the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100beta. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.

Phosphorylation of AATYK1 by Cdk5 Suppresses Its Tyrosine Phosphorylation

Tsutsumi, Koji;Takano, Tetsuya;Endo, Ryo;Fukuda, Mitsunori;Ohshima, Toshio;Tomomura, Mineko;Hisanaga, Shin-ichi

PLOS ONE 5(4) p.e102602010-2010

DOIWoS

Detail

ISSN:1932-6203

Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum.

Ito Y, Tanaka H, Okamoto H, Ohshima T

Dev. Biology 342p.26 - 382010-

Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration.

Takahashi S, Ohshima T, Hirasawa M, Pareek TK, Bugge TH, Morozov A, Fujieda K, Brady RO, KulkarniAB

American J Pathology in press 2009-

Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32.

Uchida Y, Ohshima T, Yamashita N, Ogawara M, Sasaki Y, Nakamura F, Goshima Y.

J Biol Chem. 284(40) p.27393 - 274012009/10-

Commitment of 1-methyl-4-phenylpyrinidinium ion-induced neuronal cell death by proteasome-mediated degradation of p35 Cyclin-dependent kinase 5 activator.

Endo R, Saito T, Asada A, Kawahara H, Ohshima T, Hisanaga SI

J Biol Chem 284(38) p.26029 - 260392009/09-

Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice.

Nakamura F, Ugajin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, Ohshima T, Goshima Y.

J Comp Neurol 516(5) p.360 - 3752009/06-

Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability.

Kaminosono S, Saito T, Oyama F, Ohshima T, Asada A, Nagai Y, Nukina N, Hisanaga S.

J Neurosci. 28(35) p.8747 - 552008/08-

Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone.

Hirota Y, Ohshima T, Kaneko N, Ikeda M, Iwasato T, Kulkarni AB, Mikoshiba K, Okano H, Sawamoto K.

J Neurosci 27(47) p.12829 - 382007/11-

Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1.

Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T, Taniguchi M, Honnorat J, Thomasset N, Takei K, Takahashi T, Kolattukudy P, Goshima Y.

J Neurosci 27(46) p.12546 - 542007/11-

A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex.

Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, Hevner RF, Suda Y, Aizawa S, Ohshima T, Stoykova A, Tole S.

Nat Neurosci 10(9) p.1141 - 502007/09-

Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex.

Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H, Saruta K, Iwasato T, Itohara S, Hashimoto M, Nakajima K, Ogawa M, Kulkarni AB, Mikoshiba K.

Development 134p.2273 - 22822007/06-

Modulation of Reelin signaling by Cyclin-dependent kinase 5.

Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., Mikoshiba, K

Brain Res. 1140p.84 - 952007/04-

Pak1 regulates dendritic branching and spine formation.

Hayashi, K., Ohshima, T., Hashimoto, M., Mikoshiba, K.

Developmental. Neurobiol. 67p.655 - 6692007/04-

CRMP1 mediates Reelin signaling in cortical neuronal migration.

Yamashita, N., Uchida, Y., Ohshima, T., Hirai, S-I., Nakamura, F., Masahiko Taniguchi, M., Mikoshiba, K., Honnorat, J., Kolattukudy, P., Nicole Thomasset, N., Takei, K., Takahashi, T. and Yoshio Goshima, Y.

J. Neurosci. 26(51):13357-62.(51) p.13357 - 133622006/12-

Phosphorylation of the tubulin binding protein, stathmin by Cdk5 and MAP kinase in the brain.

Hayashi, K., Pan, Y., Shu, H., Ohshima, T., Kansy, WJ., White, CL. III, Tamminga, CA., Sobel, A., Curmi, PA., Mikoshiba, K., Bibb JA.

J. Neurochem. 99p.237 - 2502006/10-

Enhanced activation of Ca2+/calmodulin-dependent kinase II upon downregulation of Cyclin-dependent kinase 5-p35.

Hosokawa, T., Saito, T., Asada, A., Ohshima, T., Itakura, M., Takahashi, M., Fukunaga, K. Hisanaga, S-

J. Neurosci. Res. 84p.747 - 7542006/06-

Role of collapsin response mediator proteins for dendritic development in hippocampal CA1 pyramidal neurons

Niisato, Emi;Yamashita, Naoya;Nakamura, Fumio;Goshima, Yoshio;Ohshima, Toshio

NEUROSCIENCE RESEARCH 68p.E250 - E2512010-2010

DOIWoS

Detail

ISSN:0168-0102

Conditional Deletion of Neuronal Cyclin-Dependent Kinase 5 in Developing Forebrain Results in Microglial Activation and Neurodegeneration

Takahashi, Satoru;Ohshima, Toshio;Hirasawa, Motoyuki;Pareek, Tej K.;Bugge, Thomas H.;Morozov, Alexei;Fujieda, Kenji;Brady, Roscoe O.;Kulkarni, Ashok B.

AMERICAN JOURNAL OF PATHOLOGY 176(1) p.320 - 3292010-2010

DOIWoS

Detail

ISSN:0002-9440

Phosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development

Terabayashi, Takeshi;Sakaguchi, Masaji;Shinmyozu, Kaori;Ohshima, Toshio;Johjima, Ai;Ogura, Teru;Miki, Hiroaki;Nishinakamura, Ryuichi

PLOS ONE 7(6) 2012-2012

DOIWoS

Detail

ISSN:1932-6203

Disturbed Purkinje cell spike activity produces dystonia in mice lacking the type 1 inositol 1,4,5-trisphosphate receptor

Hisatsune, Chihiro;Miyamoto, Hiroyuki;Hirono, Moritoshi;Yamaguchi, Naohide;Sugawara, Takeyuki;Ogawa, Naoko;Ohshima, Toshio;Yamada, Masahisa;Hensch, Takao K.;Hattori, Mitsuharu;Mikoshiba, Katsuhiko

NEUROSCIENCE RESEARCH 71p.E99 - E992011-2011

DOIWoS

Detail

ISSN:0168-0102

Genetic manipulation of mammalian lateral and medial habenula homolog in zebrafish: Toward functional analysis of the habenula

Amo, Ryunosuke;Agetsuma, Masakazu;Kinoshita, Masae;Shiraki, Toshiyuki;Higashijima, Shin-ichi;Matsuda, Masaru;Suster, Maximiliano L.;Kawakami, Koichi;Ohshima, Toshio;Aizawa, Hidenori;Okamoto, Hitoshi

NEUROSCIENCE RESEARCH 71p.E271 - E2712011-2011

DOIWoS

Detail

ISSN:0168-0102

Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream

Huilgol, Dhananjay;Udin, Susan;Shimogori, Tomomi;Saha, Bhaskar;Roy, Achira;Aizawa, Shinichi;Hevner, Robert F.;Meyer, Gundela;Ohshima, Toshio;Pleasure, Samuel J.;Zhao, Yangu;Tole, Shubha

NATURE NEUROSCIENCE 16(2) p.157 - 1652013-2013

DOIWoS

Detail

ISSN:1097-6256

Amyloid-beta(25-35) induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2

Isono, Toshinari;Yamashita, Naoya;Obara, Masami;Araki, Tomomi;Nakamura, Fumio;Kamiya, Yoshinori;Alkam, Tursun;Nitta, Atsumi;Nabeshima, Toshitaka;Mikoshiba, Katsuhiko;Ohshima, Toshio;Goshima, Yoshio

NEUROSCIENCE RESEARCH 77(3) p.180 - 1852013-2013

DOIWoS

Detail

ISSN:0168-0102

Cyclin-dependent Kinase 5 (Cdk5) Regulates the Function of CLOCK Protein by Direct Phosphorylation

Kwak, Yongdo;Jeong, Jaehoon;Lee, Saebom;Park, Young-Un;Lee, Seol-Ae;Han, Dong-Hee;Kim, Joung-Hun;Ohshima, Toshio;Mikoshiba, Katsuhiko;Suh, Yoo-Hun;Cho, Sehyung;Park, Sang Ki

JOURNAL OF BIOLOGICAL CHEMISTRY 288(52) p.36878 - 368892013-2013

DOIWoS

Detail

ISSN:0021-9258

Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration.

Tanabe Kazuya;Yamazaki Hiroyuki;Inaguma Yutaka;Asada Akiko;Kimura Taeko;Takahashi Junya;Taoka Masato;Ohshima Toshio;Furuichi Teiichi;Isobe Toshiaki;Nagata Koh-ichi;Shirao Tomoaki;Hisanaga Shin-ichi

Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. 9(3) 2014-2014

DOIWoS

Detail

ISSN:1932-6203

Outline::Cyclin-dependent kinase 5 (Cdk5)-p35 is a proline-directed Ser/Thr kinase which plays a key role in neuronal migration, neurite outgrowth, and spine formation during brain development. Dynamic remodeling of cytoskeletons is required for all of these processes. Cdk5-p35 phosphorylates many cytoskeletal proteins, but it is not fully understood how Cdk5-p35 regulates cytoskeletal reorganization associated with neuronal migration. Since actin filaments are critical for the neuronal movement and process formation, we aimed to find Cdk5 substrates among actin-binding proteins. In this study, we isolated actin gels from mouse brain extracts, which contain many actin-binding proteins, and phosphorylated them by Cdk5-p35 in vitro. Drebrin, a side binding protein of actin filaments and well known for spine formation, was identified as a phosphorylated protein. Drebrin has two isoforms, an embryonic form drebrin E and an adult type long isoform drebrin A. Ser142 was identified as a common phosphorylation site to drebrin E and A and Ser342 as a drebrin A-specific site. Phosphorylated drebrin is localized at the distal area of total drebrin in the growth cone of cultured primary neurons. By expressing nonphosphorylatable or phosphorylation mimicking mutants in developing neurons in utero, the reversible phosphorylation/dephosphorylation reaction of drebrin was shown to be involved in radial migration of cortical neurons. These results suggest that Cdk5-p35 regulates neuronal migration through phosphorylation of drebrin in growth cone processes.

Transcription profiles of the ductus arteriosus in Brown-Norway rats with irregular elastic fiber formation.

Hsieh Yi-Ting;Liu Norika Mengchia;Ohmori Eriko;Yokota Tomohiro;Kajimura Ichige;Akaike Toru;Ohshima Toshio;Goda Nobuhito;Minamisawa Susumu

Transcription profiles of the ductus arteriosus in Brown-Norway rats with irregular elastic fiber formation. 78(5) p.1224 - 12332014-2014

DOICiNiiWoS

Detail

ISSN:1347-4820

Outline:BACKGROUND:Patent ductus arteriosus (PDA) is one of the most common congenital cardiovascular defects in children. The Brown-Norway (BN) inbred rat presents a higher frequency of PDA. A previous study reported that 2 different quantitative trait loci on chromosomes 8 and 9 were significantly linked to PDA in this strain. Nevertheless, the genetic or molecular mechanisms underlying PDA phenotypes in BN rats have not been fully investigated yet.;METHODS AND RESULTS:It was found that the elastic fibers were abundant in the subendothelial area but scarce in the media even in the closed ductus arteriosus (DA) of full-term BN neonates. DNA microarray analysis identified 52 upregulated genes (fold difference >2.5) and 23 downregulated genes (fold difference <0.4) when compared with those of F344 control neonates. Among these genes, 8 (Tbx20, Scn3b, Stac, Sphkap, Trpm8, Rup2, Slc37a2, and RGD1561216) are located in chromosomes 8 and 9. Interestingly, it was also suggested that the significant decrease in the expression levels of the PGE2-specfic receptor, EP4, plays a critical role in elastogenesis in the DA.;CONCLUSIONS:BN rats exhibited dysregulation of elastogenesis in the DA. DNA microarray analysis identified the candidate genes including EP4 involved in the DNA phenotype. Further investigation of these newly identified genes will hopefully clarify the molecular mechanisms underlying the irregular formation of elastic fibers in PDA.

Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5.

Kobayashi Hiroyuki;Saito Taro;Sato Ko;Furusawa Kotaro;Hosokawa Tomohisa;Tsutsumi Koji;Asada Akiko;Kamada Shinji;Ohshima Toshio;Hisanaga Shin-ichi

Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. 289(28) p.19627 - 196362014-2014

DOIWoS

Detail

ISSN:1083-351X

Outline::Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.

Cdk5/p35 functions as a crucial regulator of spatial learning and memory.

Mishiba Tomohide;Tanaka Mika;Mita Naoki;He Xiaojuan;Sasamoto Kodai;Itohara Shigeyoshi;Ohshima Toshio

Cdk5/p35 functions as a crucial regulator of spatial learning and memory. 72014-2014

DOIWoS

Detail

ISSN:1756-6606

Outline:BACKGROUND:Cyclin-dependent kinase 5 (Cdk5), which is activated by binding to p35 or p39, is involved in synaptic plasticity and affects learning and memory formation. In Cdk5 knockout (KO) mice and p35 KO mice, brain development is severely impaired because neuronal migration is impaired and lamination is disrupted. To avoid these developmental confounders, we generated inducible CreER-p35 conditional (cKO) mice to study the role of Cdk5/p35 in higher brain function.;RESULTS:CreER-p35 cKO mice exhibited spatial learning and memory impairments and reduced anxiety-like behavior. These phenotypes resulted from a decrease in the dendritic spine density of CA1 pyramidal neurons and defective long-term depression induction in the hippocampus.;CONCLUSIONS:Taken together, our findings reveal that Cdk5/p35 regulates spatial learning and memory, implicating Cdk5/p35 as a therapeutic target in neurological disorders.

Radial glial cell-specific ablation in the adult Zebrafish brain.

Shimizu Yuki;Ito Yoko;Tanaka Hideomi;Ohshima Toshio

Genesis (New York, N.Y. : 2000) 53(7) p.431 - 4392015-2015

PubMedDOIWoS

Detail

ISSN:1526-968X

Outline::The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.

Colocalization of Phosphorylated Forms of WAVE1, CRMP2, and Tau in Alzheimer's Disease Model Mice: Involvement of Cdk5 Phosphorylation and the Effect of ATRA Treatment

Watamura, Naoto;Toba, Junya;Yoshii, Aya;Nikkuni, Miyu;Ohshima, Toshio

JOURNAL OF NEUROSCIENCE RESEARCH 94(1) p.15 - 262016-2016

DOIWoS

Detail

ISSN:0360-4012

Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain.

Mita Naoki;He Xiaojuan;Sasamoto Kodai;Mishiba Tomohide;Ohshima Toshio

Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain. 2014-2014

Detail

ISSN:1460-2199

Outline::Cyclin-dependent kinase 5 (Cdk5) activity is dependent on its association with 1 of 2 neuron-specific activators, p35 or p39. Cdk5 and its activators play an important role in brain development as well as higher functions like synaptic plasticity, learning, and memory. Reduction in p35 was reported in postmortem schizophrenia brain, in which reduced dendritic spine density was observed. Previous in vitro experiments have shown that Cdk5 is involved in dendritic spine formation, although in vivo evidence is limited. We examined dendritic spine formation in inducible-p35 conditional knockout (p35 cKO); p39 KO mice. When we deleted the p35 gene either during early postnatal days or at adult stage, we observed reduced spine densities of layer V neurons in the cerebral cortex and CA1 pyramidal neurons in the hippocampus. We further generated CA1-specific p35 conditional knockout (CA1-p35 cKO) mice and also CA1-p35 cKO; p39 KO mice in which have specific deletion of p35 in the CA1 region of hippocampus. We found a greater reduction in spine densities in CA1 pyramidal neurons in CA1-p35 cKO; p39 KO mice than in CA1-p35 cKO mice. These results indicate that dendritic spine formation and neuronal maintenance are dependent on Cdk5 activity.

Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation.

Nagai Jun;Kitamura Yoshiteru;Owada Kazuki;Yamashita Naoya;Takei Kohtaro;Goshima Yoshio;Ohshima Toshio

Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. 52015-2015

DOI

Detail

ISSN:2045-2322

Outline::Axonal outgrowth inhibitors and scar formation are two major obstacles to central nervous system (CNS) repair. No target molecule that regulates both axonal growth and scarring has been identified. Here we identified collapsin response mediator protein 4 (CRMP4), a common mediator of inhibitory signals after neural injury, as a crucial factor that contributes to both axonal growth inhibition and scarring after spinal cord injury (SCI). We found increases in the inhibitory and toxic forms of CRMP4 in injured spinal cord. Notably, CRMP4 expression was evident in inflammatory cells as well as in neurons after spinal cord transection. Crmp4-/- mice displayed neuroprotection against SCI and reductions in inflammatory response and scar formation. This permissive environment for axonal growth due to CRMP4 deletion restored locomotor activity at an unusually early phase of healing. These results suggest that deletion of CRMP4 is a unique therapeutic strategy that overcomes two obstacles to CNS repair after SCI.

Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment

Watamura, Naoto; Toba, Junya; Yoshii, Aya; Nikkuni, Miyu; Ohshima, Toshio

Journal of Neuroscience Research 94(1) p.15 - 262016/01-2016/01

PubMedDOIScopus

Detail

ISSN:03604012

Outline:© 2015 Wiley Periodicals, Inc.Alzheimer's disease (AD) is the most common type of dementia among the elderly. Neurofibrillary tangles (NFTs), a major pathological hallmark of AD, are composed of tau protein that is hyperphosphorylated by cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β (GSK3β). NFTs also contain Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) and collapsin response-mediator protein 2 (CRMP2). Although Cdk5 is known to phosphorylate tau, WAVE1, and CRMP2, the significance of this with respect to NFT formation remains to be elucidated. This study examines the involvement of phosphorylated (p-) CRMP2 and WAVE1 in p-tau aggregates using a triple-transgenic (3×Tg; APPswe/PS1M146V/tauP301L) AD mouse model. First, we verified the colocalization of p-WAVE1 and p-CRMP2 with aggregated hyperphosphorylated tau in the hippocampus at 23 months of age. Biochemical analysis revealed the inclusion of p-WAVE1, p-CRMP2, and tau in the sarkosyl-insoluble fractions of hippocampal homogenates. To test the significance of phosphorylation of these proteins further, we administered all-trans-retinoic acid (ATRA) to the 3×Tg mice, which downregulates Cdk5 and GSK3β activity. In ATRA-treated mice, fewer and smaller tau aggregates were observed compared with non-ATRA-treated mice. These results suggest the possibility of novel therapeutic target molecules for preventing tau pathology.

Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses

Nagai, Jun; Nagai, Jun; Owada, Kazuki; Kitamura, Yoshiteru; Goshima, Yoshio; Ohshima, Toshio

Experimental Neurology 277p.283 - 2952016/03-2016/03

PubMedDOIScopus

Detail

ISSN:00144886

Outline:© 2016 Elsevier Inc.Central nervous system (CNS) regeneration is restricted by both the lack of neurotrophic responses and the presence of inhibitory factors. As of yet, a common mediator of these two pathways has not been identified. Microtubule dynamics is responsible for several key processes after CNS injuries: intracellular trafficking of receptors for neurotrophic factors, axonal retraction by inhibitory factors, and secondary tissue damages by inflammation and scarring. Kinases regulating microtubule organization, such as Cdk5 or GSK3β, may play pivotal roles during CNS recovery, but the molecular mechanisms remain to be elucidated. Collapsin response mediator protein 2 (CRMP2) stabilizes cytoskeletal polymerization, while CRMP2 phosphorylation by Cdk5 and GSK3β loses its affinity for cytoskeleton proteins, leading to the inhibition of axonal growth. Here, we characterized CRMP2 phosphorylation as the first crucial factor regulating neurotrophic and inhibitory responses after spinal cord injury (SCI). We found that pharmacological inhibition of GSK3β enhanced brain-derived neurotrophic factor (BDNF)-induced axonal growth response in cultured dorsal root ganglion (DRG) neurons. DRG neurons from CRMP2 knock-in (Crmp2KI/KI) mice, where CRMP2 phosphorylation was eliminated, showed elevated sensitivity to BDNF as well. Additionally, cultured Crmp2KI/KI neurons exhibited suppressed axonal growth inhibition by chondroitin sulfate proteoglycan (CSPG). These data suggest a couple of new molecular insights: the BDNF/GSK3β/CRMP2 and CSPG/GSK3β/CRMP2 pathways. Next, we tested the significance of CRMP2 phosphorylation after CNS injury in vivo. The phosphorylation level of CRMP2 was enhanced in the injured spinal cord. Crmp2KI/KI mice exhibited prominent recovery of locomotive and nociceptive functions after SCI, which correlated with the enhanced axonal growth of the motor and sensory neurons. Neuroprotective effects against SCI, such as microtubule stabilization, reduced inflammation, and suppressed scarring were also observed by inhibiting CRMP2 phosphorylation. Therefore, inhibition of CRMP2 phosphorylation demonstrates the unique potential to repair SCI by both enhancing sensitivity to BDNF and reducing inhibitory responses.

Phosphorylation of CRMP2 by Cdk5 regulates dendritic spine development of cortical neuron in the mouse hippocampus

Jin, Xiaohua; Sasamoto, Kodai; Nagai, Jun; Yamazaki, Yuki; Saito, Kenta; Goshima, Yoshio; Inoue, Takafumi; Ohshima, Toshio

Neural Plasticity 20162016/01-2016/01

DOIScopus

Detail

ISSN:20905904

Outline:© 2016 Xiaohua Jin et al.Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate thedevelopment and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5) is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2) in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain

Mita, Naoki; He, Xiaojuan; Sasamoto, Kodai; Mishiba, Tomohide; Ohshima, Toshio

Cerebral Cortex 26(3) p.967 - 9762016/03-2016/03

DOIScopus

Detail

ISSN:10473211

Outline:© 2014 The Author. Published by Oxford University Press. All rights reserved.Cyclin-dependent kinase 5 (Cdk5) activity is dependent on its association with 1 of 2 neuron-specific activators, p35 or p39. Cdk5 and its activators play an important role in brain development as well as higher functions like synaptic plasticity, learning, and memory. Reduction in p35 was reported in postmortem schizophrenia brain, in which reduced dendritic spine density was observed. Previous in vitro experiments have shown that Cdk5 is involved in dendritic spine formation, although in vivo evidence is limited. We examined dendritic spine formation in inducible-p35 conditional knockout (p35 cKO); p39 KO mice. When we deleted the p35 gene either during early postnatal days or at adult stage, we observed reduced spine densities of layer V neurons in the cerebral cortex and CA1 pyramidal neurons in the hippocampus. We further generated CA1-specific p35 conditional knockout (CA1-p35 cKO) mice and also CA1-p35 cKO; p39 KO mice in which have specific deletion of p35 in the CA1 region of hippocampus. We found a greater reduction in spine densities in CA1 pyramidal neurons in CA1-p35 cKO; p39 KO mice than in CA1-p35 cKO mice. These results indicate that dendritic spine formation and neuronal maintenance are dependent on Cdk5 activity.

Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury

Nagai, Jun; Nagai, Jun; Takaya, Ryosuke; Piao, Wenhui; Goshima, Yoshio; Ohshima, Toshio

Molecular and Cellular Neuroscience 74p.42 - 482016/07-2016/07

DOIScopus

Detail

ISSN:10447431

Outline:© 2016 Elsevier Inc.The capacity for regeneration in the injured adult mammalian central nervous system (CNS) is largely limited by potent inhibitory barriers. Chondroitin sulfate proteoglycans (CSPGs) are major inhibitors of axonal regeneration/sprouting and accumulate at lesion sites after CNS trauma. Despite extensive research during the two decades since their discovery, the molecular mechanisms remain elusive, including intracellular phosphorylation events. Collapsin response mediator protein 4 (CRMP4) is known to directly regulate cytoskeletal dynamics and neurite extension, while phosphorylated CRMP4 loses its binding affinity for cytoskeletal proteins. We have previously found that spinal cord injury (SCI) induces CRMP4 upregulation and phosphorylation and that CRMP4 knockout (Crmp4. -/-) mice show behavioral recovery of locomotor function after SCI. However, the role of CRMP4 in the recovery of other forms of physiological function such as sensation remains largely unknown. We here have demonstrated CRMP4 involvement in CSPG-induced inhibitory signaling and nociceptive recovery in Crmp4. -/- mice after SCI. We cultured dorsal root ganglion (DRG) neurons on CSPG-coated dishes; Crmp4 deletion overrode CSPG-induced inhibition of axon growth in vitro. CRMP4 levels were increased in DRGs in vivo after SCI. Crmp4. -/- mice exhibited axonal growth of sensory neurons and recovery of nociceptive function after spinal transection. These results support Crmp4 deletion as a therapeutic target in the treatment of SCI.

PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice

Toba, Junya; Nikkuni, Miyu; Ishizeki, Masato; Yoshii, Aya; Watamura, Naoto; Inoue, Takafumi; Ohshima, Toshio

Biochemical and Biophysical Research Communications 473(4) p.1039 - 10442016/05-2016/05

DOIScopus

Detail

ISSN:0006291X

Outline:© 2016 Elsevier Inc. All rights reserved.Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice.

Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease

Tonouchi, Aine; Nagai, Jun; Nagai, Jun; Togashi, Kentaro; Goshima, Yoshio; Ohshima, Toshio

Journal of Neurochemistry 137(5) p.795 - 8052016/06-2016/06

DOIScopus

Detail

ISSN:00223042

Outline:© 2016 International Society for Neurochemistry.Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several lines of evidence suggest that neurodegeneration in PD is accelerated by a vicious cycle in which apoptosis in dopaminergic neurons triggers the activation of microglia and harmful inflammatory processes that further amplify neuronal death. Recently, we demonstrated that the deletion of collapsin response mediator protein 4 (CRMP4) suppresses inflammatory responses and cell death in a mouse model of spinal cord injury, leading to improved functional recovery. We thus hypothesized that Crmp4-/- mice may have limited inflammatory responses and a decrease in the loss of SNc dopaminergic neurons in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We observed CRMP4 expression in neurons, astrocytes, and microglia/macrophages following the injection of 25 mg/kg MPTP. We compared the number of dopaminergic neurons and the inflammatory response in SNc between Crmp4+/+ and Crmp4-/- mice after MPTP injection. Limited loss of SNc dopaminergic neurons and decreased activations of microglia and astrocytes were observed in Crmp4-/- mice. These results suggest that CRMP4 is a novel therapeutic target in the treatment of PD patients. We demonstrated that genetic CRMP4 deletion delays a vicious cycle of inflammation and neurodegeneration in a Parkinson's disease mouse model. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injection to wild-type mice induces collapsin response mediator protein 4 (CRMP4) up-regulation in neurons, astrocytes, and microglia. CRMP4-deficient mice show reduced inflammation and suppressed dopaminergic neuronal death after MPTP injection. These findings suggest that CRMP4 deletion may be a new therapeutic strategy against Parkinson's diseases. We demonstrated that genetic CRMP4 deletion delays a vicious cycle of inflammation and neurodegeneration in a Parkinson's disease mouse model. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injection to wild-type mice induces collapsin response mediator protein 4 (CRMP4) up-regulation in neurons, astrocytes, and microglia. CRMP4-deficient mice show reduced inflammation and suppressed dopaminergic neuronal death after MPTP injection. These findings suggest that CRMP4 deletion may be a new therapeutic strategy against Parkinson's diseases.

CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury

Nagai, Jun; Nagai, Jun; Baba, Rina; Ohshima, Toshio

Molecular Neurobiology p.1 - 142016/06-2016/06

DOIScopus

Detail

ISSN:08937648

Outline:© 2016 Springer Science+Business Media New YorkNeurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.

All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer's mouse model

Takamura, Risa; Watamura, Naoto; Nikkuni, Miyu; Ohshima, Toshio

Journal of Neuroscience Research 95(3) p.897 - 9062017/03-2017/03

DOIScopus

Detail

ISSN:03604012

Outline:© 2016 Wiley Periodicals, Inc.Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive impairment with neuronal loss. The number of patients suffering from AD has increased, but none of the present therapies stops the progressive symptoms in patients with AD. It has been reported that the activation of microglial cells induces harmful chronic inflammation, leading to neuronal death. Furthermore, the impairment of adult neurogenesis in the hippocampus has been observed earlier than amyloid plaque formation. Inflammatory response may lead to impaired adult neurogenesis in patients with AD. This study examines the relationship between adult neurogenesis and neuroinflammation using APPswe/PS1M146V/tauP301L (3 × Tg) mice. We observed a decline in the proliferation of neural stem cells and the occurrence of severe inflammation in the hippocampus of 3 × Tg mouse brains at 12 months of age. Previously, our research had shown an anti-inflammatory effect of all-trans retinoic acid (ATRA) in the 3 × Tg mouse brain. We found that ATRA has effects on the recovery of proliferative cells along with suppression of activated microglia in the hippocampus. These results suggest that the inhibition of microglial activation by ATRA leads to recovery of adult neurogenesis in the hippocampus in an AD mouse model. © 2016 Wiley Periodicals, Inc.

Optic nerve input-dependent regulation of neural stem cell proliferation in the optic tectum of adult zebrafish

Sato, Yuki; Yano, Hiroaki; Shimizu, Yuki; Tanaka, Hideomi; Ohshima, Toshio

Developmental Neurobiology 77(4) p.474 - 4822017/04-2017/04

DOIScopus

Detail

ISSN:19328451

Outline:© 2016 Wiley Periodicals, Inc.Adult neurogenesis attracts broad attention as a possible cure for neurological disorders. However, its regulatory mechanism is still unclear. Therefore, they have been studying the cell proliferation mechanisms of neural stem cells (NSCs) using zebrafish, which have high regenerative potential in the adult brain. The presence of neuroepithelial-type NSCs in the optic tectum of adult zebrafish has been previously reported. In the present study, it was first confirmed that NSCs in the optic tectum decrease or increase in proportion to projection of the optic nerves from the retina. At 4 days after optic nerve crush (ONC), BrdU-positive cells decreased in the optic tectum's operation side. In contrast, at 3 weeks after ONC, BrdU-positive cells increased in the optic tectum's operation side. To study the regulatory mechanisms, they focused on the BDNF/TrkB system as a regulatory factor in the ONC model. It was found that bdnf was mainly expressed in the periventricular gray zone (PGZ) of the optic tectum by using in situ hybridization. Interestingly, expression level of bdnf significantly decreased in the optic tectum at 4 days after ONC, and its expression level tended to increase at 3 weeks after ONC. They conducted rescue experiments using a TrkB agonist and confirmed that decrease of NSC proliferation in the optic tectum by ONC was rescued by TrkB signal activation, suggesting stimuli-dependent regulation of NSC proliferation in the optic tectum of adult zebrafish. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017.

CRMP1 and CRMP4 are required for proper orientation of dendrites of cerebral pyramidal neurons in the developing mouse brain

Takaya, Ryosuke; Nagai, Jun; Nagai, Jun; Piao, Wenfui; Niisato, Emi; Nakabayashi, Takeru; Yamazaki, Yuki; Nakamura, Fumio; Yamashita, Naoya; Kolattukudy, Papachan; Goshima, Yoshio; Ohshima, Toshio

Brain Research 1655p.161 - 1672017/01-2017/01

DOIScopus

Detail

ISSN:00068993

Outline:© 2016 Elsevier B.V.Neural circuit formation is a critical process in brain development. Axon guidance molecules, their receptors, and intracellular mediators are important to establish neural circuits. Collapsin response mediator proteins (CRMPs) are known intercellular mediators of a number of repulsive guidance molecules. Studies of mutant mice suggest roles of CRMPs in dendrite development. However, molecular mechanisms of CRMP-mediated dendritic development remain to elucidate. In this study, we show abnormal orientation of basal dendrites (extension to deeper side) of layer V pyramidal neurons in the cerebral cortex of CRMP4−/− mice. Moreover, we observed severe abnormality in orientation of the basal dendrites of these neurons in double knockout of CRMP1 and 4, suggesting redundant functions of these two genes. Redundant gene functions were also observed in proximal bifurcation phenotype in apical dendrites of hippocampal CA1 pyramidal neurons. These results indicate that CRMP1 and CRMP4 regulate proper orientation of the basal dendrites of layer V neurons in the cerebral cortex.

Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth

Kotaka, Ken; Nagai, Jun; Nagai, Jun; Hensley, Kenneth; Ohshima, Toshio

Biochemical and Biophysical Research Communications 483(1) p.759 - 7642017/01-2017/01

DOIScopus

Detail

ISSN:0006291X

Outline:© 2016 Elsevier Inc.The mammalian central nervous system (CNS) has limited regenerative ability after injury, largely due to scar formation and axonal growth inhibitors. Experimental suppression of neuroinflammation encourages recovery from spinal cord injury (SCI), yet practical means for pharmacologically treating SCI have remained elusive. Lanthionine ketimine (LK) is a natural brain sulfur amino acid metabolite with demonstrated anti-neuroinflammatory and neurotrophic activities. LK and its synthetic brain-penetrating ethyl ester (LKE) promote growth factor-dependent neurite extension in cultured cell and suppress microglial activation in animal models of neurodegeneration. Thus far however, LKE has not been explored as a potential therapy for SCI. The present study investigated the hypothesis that systemic LKE could improve motor functional recovery after SCI in a mouse model. Intraperitoneal administration of LKE (100 mg/kg/d) after near-complete transect of spinal cord at the T7 level significantly improved motor function over a 4-week time course. Vehicle-treated mice, in contrast, demonstrated negligible functional recovery. In terms of histology, LKE treatment reduced pro-neuroinflammatory microglia/macrophage activation evidenced by quantitative Iba1 labeling and shifted the microglial phenotype toward a more neurotrophic M2 character evidenced by changes in the M2 marker arginase-1. This was correlated with less dense scar formation and more extensive axonal regrowth across the transection site demonstrated by 5-hydroxytryptamine (5HT) immunolabeling of raphespinal tract axons. These data provide evidence that LKE or similar compounds have potential therapeutic value for recovery after certain forms of SCI.

CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling

Abdallah, Basem M.; Abdallah, Basem M.; Abdallah, Basem M.; Figeac, Florence; Larsen, Kenneth H.; Ditzel, Nicholas; Keshari, Pankaj; Isa, Adiba; Jafari, Abbas; Andersen, Thomas L.; Delaisse, Jean Marie; Goshima, Yoshio; Ohshima, Toshio; Kassem, Moustapha; Kassem, Moustapha; Kassem, Moustapha

Journal of Bone and Mineral Research 32(5) p.913 - 9262017/05-2017/05

DOIScopus

Detail

ISSN:08840431

Outline:© 2016 American Society for Bone and Mineral Research We identified the neuroprotein collapsing response mediator protein-4 (CRMP4) as a noncanonical osteogenic factor that regulates the differentiation of mouse bone marrow skeletal stem cells (bone marrow stromal stem cells [mBMSCs]) into osteoblastic cells. CRMP4 is the only member of the CRMP1–CRMP5 family to be expressed by mBMSCs and in osteoprogenitors of both adult mouse and human bones. In vitro gain-of-function and loss-of-function of CRMP4 in murine stromal cells revealed its inhibitory effect on osteoblast differentiation. In addition, Crmp4-deficient mice (Crmp4 –/– ) displayed a 40% increase in bone mass, increased mineral apposition rate, and bone formation rate, compared to wild-type controls. Increased bone mass in Crmp4 –/– mice was associated with enhanced BMP2 signaling and BMP2-induced osteoblast differentiation in Crmp4 –/– osteoblasts (OBs). Furthermore, Crmp4 –/– OBs exhibited enhanced activation of RhoA/focal adhesion kinase (FAK) signaling that led to cytoskeletal changes with increased cell spreading. In addition, Crmp4 –/– OBs exhibited increased cell proliferation that was mediated via inhibiting cyclin-dependent kinase inhibitor 1B, p27 Kip1 and upregulating cyclin D1 expression which are targets of RhoA signaling pathway. Our findings identify CRMP4 as a novel negative regulator of osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.

Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis

Tobe, Brian T.D.; Tobe, Brian T.D.; Tobe, Brian T.D.; Crain, Andrew M.; Crain, Andrew M.; Winquist, Alicia M.; Winquist, Alicia M.; Calabrese, Barbara; Calabrese, Barbara; Makihara, Hiroko; Zhao, Wen Ning; Zhao, Wen Ning; Lalonde, Jasmin; Lalonde, Jasmin; Nakamura, Haruko; Konopaske, Glenn; Konopaske, Glenn; Konopaske, Glenn; Sidor, Michelle; Pernia, Cameron D.; Pernia, Cameron D.; Yamashita, Naoya; Wada, Moyuka; Inoue, Yuuka; Nakamura, Fumio; Sheridan, Steven D.; Sheridan, Steven D.; Logan, Ryan W.; Brandel, Michael; Brandel, Michael; Wu, Dongmei; Hunsberger, Joshua; Dorsett, Laurel; Dorsett, Laurel; Duerr, Cordulla; Duerr, Cordulla; Basa, Ranor C.B.; McCarthy, Michael J.; McCarthy, Michael J.; Udeshi, Namrata D.; Mertins, Philipp; Carr, Steven A.; Rouleau, Guy A.; Mastrangelo, Lina; Mastrangelo, Lina; Li, Jianxue; Gutierrez, Gustavo J.; Gutierrez, Gustavo J.; Brill, Laurence M.; Venizelos, Nikolaos; Chen, Guang; Nye, Jeffrey S.; Manji, Husseini; Price, Jeffrey H.; Price, Jeffrey H.; McClungk, Colleen A.; Akiskal, Hagop S.; Alda, Martin; Chuang, De Maw M.; Coyle, Joseph T.; Coyle, Joseph T.; Liua, Yang; Teng, Yang D.; Teng, Yang D.; Ohshima, Toshio; Ohshima, Toshio; Mikoshiba, Katsuhiko; Mikoshiba, Katsuhiko; Sidman, Richard L.; Halpain, Shelley; Halpain, Shelley; Haggarty, Stephen J.; Haggarty, Stephen J.; Goshima, Yoshio; Snyder, Evan Y.; Snyder, Evan Y.; Snyder, Evan Y.

Proceedings of the National Academy of Sciences of the United States of America 114(22) p.E4462 - E44712017/05-2017/05

DOIScopus

Detail

ISSN:00278424

Outline:The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSCderived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.

Wnt and Shh signals regulate neural stem cell proliferation and differentiation in the optic tectum of adult zebrafish

Shitasako, Shiori; Ito, Yoko; Ito, Ryoichi; Ueda, Yuto; Shimizu, Yuki; Ohshima, Toshio

Developmental Neurobiology 77(10) p.1206 - 12202017/10-2017/10

DOIScopus

Detail

ISSN:19328451

Outline:© 2017 Wiley Periodicals, Inc. Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial-like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2-positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017.

Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners

Xu, Bozong; Kumazawa, Ayumi; Kumazawa, Ayumi; Kobayashi, Shunsuke; Hisanaga, Shin Ichi; Inoue, Takafumi; Ohshima, Toshio

Developmental Neurobiology 77(10) p.1175 - 11872017/10-2017/10

DOIScopus

Detail

ISSN:19328451

Outline:© 2017 Wiley Periodicals, Inc. Cyclin-dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5-null Purkinje cells and Purkinje cells in Wnt1 cre -mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7 cre -mediated p35; p39 double KO (L7 cre -p35 f/f ; p39 –/– ) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell-autonomous in vivo. We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5-null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non-cell-autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain-derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7 cre -p35 f/f ; p39 –/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017.

Protein tyrosine phosphatase δ mediates the sema3a-induced cortical basal dendritic arborization through the activation of fyn tyrosine kinase

Nakamura, Fumio; Nakamura, Fumio; Nakamura, Fumio; Okada, Takako; Shishikura, Maria; Shishikura, Maria; Uetani, Noriko; Taniguchi, Masahiko; Yagi, Takeshi; Iwakura, Yoichiro; Ohshima, Toshio; Goshima, Yoshio; Strittmatter, Stephen M.

Journal of Neuroscience 37(30) p.7125 - 71392017/07-2017/07

PubMedDOIScopus

Detail

ISSN:02706474

Outline:© 2017 the authors. Leukocytecommonantigen-related(LAR)class protein tyrosine phosphatases (PTPs) are critical for axonal guidance; however, their relation to specific guidance cues is poorly defined. We here show that PTP-3, a LAR homolog in Caenorhabditis elegans, is involved in axon guidance regulated by Semaphorin-2A-signaling. PTPδ, one of the vertebrate LAR class PTPs, participates in the Semaphorin-3A (Sema3A)-induced growthconecollapseresponseofprimarycultured dorsal rootganglionneuronsfromMusmusculusembryos.Invivo,however,the contribution of PTPδ in Sema3A-regualted axon guidance was minimal. Instead, PTPδ played a major role in Sema3A-dependent cortical dendritic growth. Ptpδ -/- and Sema3a -/- mutant mice exhibited poor arborization of basal dendrites of cortical layerVneurons. This phenotype was observed in both male and female mutants. The double-heterozygous mutants, Ptpδ -/- ; Sema3a -/- , also showed a similar phenotype, indicating the geneticinteraction.InPtpδ -/- brains, Fynand Srckinaseswerehyper phosphorylatedat theirC-terminal Tyr527 residues. Sema3A-stimulation induced dephosphorylation of Tyr527 in the dendrites of wild-type cortical neurons but not of Ptpδ -/- . Arborization of cortical basal dendrites was reduced in Fyn -/- as well as in Ptpδ -/- ; Fyn -/- double-heterozygous mutants. Collectively, PTPδ mediates Sema3A-signaling through the activation of Fyn by C-terminal dephosphorylation.

A role for CA3 in social recognition memory

Chiang, Ming Ching; Chiang, Ming Ching; Huang, Arthur J.Y.; Wintzer, Marie E.; Ohshima, Toshio; McHugh, Thomas J.

Behavioural Brain Research 2018/01-2018/01

DOIScopus

Detail

ISSN:01664328

Outline:© 2018 Elsevier B.V. Social recognition memory is crucial for survival across species, underlying the need to correctly identify conspecifics, mates and potential enemies. In humans the hippocampus is engaged in social and episodic memory, however the circuit mechanisms of social memory in rodent models has only recently come under scrutiny. Work in mice has established that the dorsal CA2 and ventral CA1 regions play critical roles, however a more comprehensive comparative analyses of the circuits and mechanisms required has not been reported. Here we employ conditional genetics to examine the differential contributions of the hippocampal subfields to social memory. We find that the deletion of NMDA receptor subunit 1 gene (NR1), which abolishes NMDA receptor synaptic plasticity, in CA3 pyramidal cells led to deficits in social memory; however, mice lacking the same gene in DG granule cells performed indistinguishable from controls. Further, we use conditional pharmacogenetic inhibition to demonstrate that activity in ventral, but not dorsal, CA3 is necessary for the encoding of a social memory. These findings demonstrated CA3 pyramidal cell plasticity and transmission contribute to the encoding of social stimuli and help further identify the distinct circuits underlying the role of the hippocampus in social memory.

Zebrafish Mecp2 is required for proper axonal elongation of motor neurons and synapse formation

Nozawa, Keisuke; Lin, Yanbin; Kubodera, Ryota; Shimizu, Yuki; Tanaka, Hideomi; Ohshima, Toshio

Developmental Neurobiology 77(9) p.1101 - 11132017/09-2017/09

DOIScopus

Detail

ISSN:19328451

Outline:© 2017 Wiley Periodicals, Inc. Rett syndrome is a severe neurodevelopmental disorder. It is caused by a mutation in methyl-CpG binding protein 2 (MecP2), a transcriptional regulator that recruits protein complexes involved in histone modification and chromatin remodeling. However, the role of Mecp2 in Rett syndrome remains unclear. In this study, we investigated the function of Mecp2 in neuronal development using zebrafish embryos. Mecp2 expression was detected ubiquitously in the central nervous system and muscles at 28 h postfertilization (hpf). We injected an antisense morpholino oligonucleotide (AMO) to induce Mecp2 knockdown phenotype. In mecp2 morphants (embryos with Mecp2 knockdown by AMO) at 28 and 72 hpf, we found an increase in abnormal axonal branches of caudal primary motor neurons and a decrease in motor activity. In mecp2 morphants at 24 hpf, we observed an increase in the expression of an mecp2 downstream candidate gene, brain derived neurotrophic factor (bdnf). In mecp2 morphants at 72 hpf, the presynaptic area stained by an anti-SV2 antibody was increased at the neuromuscular junction (NMJ). Interestingly, the size of SV2-positive presynaptic area at the NMJ was also increased following bdnf mRNA injection, while it was normalized in a double knockdown of mecp2 and bdnf. These results imply that Mecp2 is an important functional regulator of bdnf gene expression during neural circuit formation in zebrafish embryo. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1101–1113, 2017.

Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm

Hashimoto, Shoko; Ishii, Ayano; Ishii, Ayano; Kamano, Naoko; Watamura, Naoto; Watamura, Naoto; Saito, Takashi; Saito, Takashi; Ohshima, Toshio; Yokosuka, Makoto; Saido, Takaomi C.

Journal of Biological Chemistry 293(9) p.3118 - 31252018/01-2018/01

DOIScopus

Detail

ISSN:00219258

Outline:© 2018 by The American Society for Biochemistry and Molecular Biology, Inc. Endoplasmic reticulum (ER) stress is believed to play an important role in the etiology of Alzheimer's disease (AD). The accumulation of misfolded proteins and perturbation of intracellular calcium homeostasis are thought to underlie the induction of ER stress, resulting in neuronal dysfunction and cell death. Several reports have shown an increased ER stress response in amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic (Tg) AD mouse models. However, whether the ER stress observed in these mouse models is actually caused byADpathology remains unclear. APP and PS1 contain one and nine transmembrane domains, respectively, for which it has been postulated that overexpressed membrane proteins can become wedged in a misfolded configuration in ER membranes, thereby inducing nonspecific ER stress. Here, we used an App-knockin (KI) AD mouse model that accumulates amyloid-β (Aβ) peptide without overexpressing APP to investigate whether the ER stress response is heightened because ofAβ pathology. Thorough examinations indicated that no ER stress responses arose in App-KI or single APP-Tg mice. These results suggest thatPS1overexpression or mutation induced a nonspecific ER stress response that was independent of Aβ pathology in the double-Tg mice. Moreover, we observed no ER stress in a mouse model of tauopathy (P301S-Tau-Tg mice) at various ages, suggesting that ER stress is also not essential in tau pathology-induced neurodegeneration. We conclude that the role of ER stress in AD pathogenesis needs to be carefully addressed in future studies.

Books And Publication

Cyclin Dependent Kinase5

Ohshima, T.

Spriger2008-

Detali

ISBN:978-0-387-78886-9

Lecture And Oral

Requirement of Cdk5 for proper cerebellar development and function

2nd international symposium on Cdk5 Tokyo2009/06

Detail

Oral presentation(general)

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:

Elucidation of roles of CRMP in neural circuit formation and regeneration and application for the treatment of spinal cord injury

2014/-0-2017/-0

Allocation Class:¥5200000

Research Classification:

Functional analysis of Cdk5 by using conditional KO of its activating subunit p35

Allocation Class:¥4550000

Research Classification:

Proteomics of phospho-proteins during brain development using mutant mice

Allocation Class:¥4020000

Research Classification:

The role of CRMP family proteins in the establishment of neural tissue architectures

Allocation Class:¥101700000

Research Classification:

Identification and functional analysis of Cdk5-mediated phosphorylation of the proteins that are related to brain formation and development

Allocation Class:¥3700000

On-campus Research System

Special Research Project

膵β細胞におけるCdk5の役割の解明と糖尿治療への応用

2009

Research Results Outline:我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を示唆した(WeiらNat. Med 11, 1104, 2005)。2008年度の特定課題研究Aで...我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を示唆した(WeiらNat. Med 11, 1104, 2005)。2008年度の特定課題研究Aではbeta細胞特異的なCdk5抑制モデルマウスを作成し解析した。予想に反し、beta細胞特異的なCdk5抑制マウスは生後にbeta細胞の減少を示し、6週齢で糖尿病状態を示した。この事は、Cdk5がbeta細胞の生存に不可欠である事を示唆しているが、Cdk5活性の低下が、生存そのものに必須なのか、増殖・分化に必須なのか、不明である。Cdk5阻害剤の糖尿病治療薬としての応用を考えた場合には、Cdk5のbeta細胞への作用は、明確にする必要があり、以下の実験を行なった。1) beta細胞特異的なCdk5抑制モデルマウスのbata細胞の細胞死について、TUNEL染色で検討。2) beta細胞特異的なCdk5抑制モデルマウスのbeta細胞の増殖について、BrdUのラベルやKi67などの増殖細胞のマーカーで検討。3) beta細胞特異的なCdk5抑制モデルマウスとアポトーシスシグナル構成因子のBax欠損マウスを交配し、beta細胞の数を週齢ごとに、Tg;Bax+/+、 Tg;Bax-/-、 nonTg;Bax-/-の3群で比較。<結果と考察>1) beta細胞特異的なCdk5抑制モデルマウスにおいて、beta細胞が減少する原因を検討するため、TUNEL染色を行なったが、Tgマウスにおいて、明確なTUNEL陽性細胞数の上昇はなかった。2) 同様に、増殖細胞数に明らかな変化はなかった3) Tg;Bax-/- vs Tg;Bax+/+間で明確なbeta細胞が減少に差はなかった。すなわち、明確なrescueは得られなかった。Tg作成より、5-7世代目の解析となり、Tgの発現レベルが低下していた。このため、Tg単独でのbeta細胞の減少程度が軽度となり、細胞死、細胞増殖低下などの評価が困難となった。このため、1)-3)で行なった検討で、明確な結果が得られなかった。Tgは世代が進むにつれてTg由来の遺伝子産物の発現レベルが低下するという問題点があり、今回の解析でも、明確な結論が得られなかった大きな要因となった。今後検討を進めるために、再度Tgを作成する方向も検討することとした。

細胞内サイクリン依存性キナーゼ5活性のモニタリング法の開発

2010

Research Results Outline:サイクリン依存性キナーゼ5(Cyclin-dependent kinase 5, Cdk5)は、脳形成過程での役割に加え、様々な脳機能への関与が知れらサイクリン依存性キナーゼ5(Cyclin-dependent kinase 5, Cdk5)は、脳形成過程での役割に加え、様々な脳機能への関与が知れらているが、その活性上昇が神経変性過程で報告されている。しかし、活性上昇が神経細胞死の原因であるとす...サイクリン依存性キナーゼ5(Cyclin-dependent kinase 5, Cdk5)は、脳形成過程での役割に加え、様々な脳機能への関与が知れらているが、その活性上昇が神経変性過程で報告されている。しかし、活性上昇が神経細胞死の原因であるとする報告があるものの、結果にすぎないとする反論があり、結論が出ていない。神経細胞中のCdk5活性を生きたままモニタリング出来れば、細胞死に先立って活性上昇があるのか、細胞死後に活性が上がるのかを検討できる。本研究では、Fluorescence Resonant Energy Transfer (FRET)を用いた生細胞でのCdk5活性のモニタリング法を開発して、神経細胞内での活性測定を試みることを目的とした。 FRETによるCdk5活性のモニタリング法は、1. Cdk5活性と活性型Cdk5の局在-Cdk5及びp35キメラタンパク質のヘテロ二量体形成による解析、2. Cdk5の基質タンパク質にCdk5のリン酸化依存的に起きるタンパク質相互作用を利用したものを用いた。1のCdk5/p35ヘテロ二量体形成に伴うFRETを培養神経細胞で観察した。グルタミン酸添加により一過性の活性上昇が知られているが、FRETの上昇が観察され、Cdk5/p35のヘテロ二量体形成の増加が推定された。2の基質リン酸化依存的なタンパク室結合を、FRETシグナルとして培養COS細胞を用いた系で観察することに成功した。これらの結果を踏まえて今後神経細胞にCdk5活性を上昇させる刺激を加えた時、細胞死を誘導した時などのFRETの変化を検討する予定である。本研究によるCdk5活性のFRET法を用いたモニタリング系をさらに発展させることで、神経細胞死におけるCdk5活性の意義、即ち原因であるか結果であるかを明らかにすることが可能であると考えた。

軸索ガイダンス関連因子CRMPのリン酸化による機能制御の個体レベルでの解析と応用

2011

Research Results Outline:脳機能の発現には正しく神経回路が形成される必要があり、その過程で軸索ガイダンスという機構が重要である。細胞外に分泌される軸索ガイダンス分子とそれを感受脳機能の発現には正しく神経回路が形成される必要があり、その過程で軸索ガイダンスという機構が重要である。細胞外に分泌される軸索ガイダンス分子とそれを感受するシステムの組み合わせがあり、Sema3Aというガイダンス分子を感受し、それに反応するために必要...脳機能の発現には正しく神経回路が形成される必要があり、その過程で軸索ガイダンスという機構が重要である。細胞外に分泌される軸索ガイダンス分子とそれを感受するシステムの組み合わせがあり、Sema3Aというガイダンス分子を感受し、それに反応するために必要な分子として同定されたものがCRMPである。我々はCdk5の基質としてCRMP2を同定し、そのSer522をCdk5がリン酸化することを示した。本研究では、CRMPの機能をそのリン酸化による調節を含めて、マウスとゼブラフィッシュをモデル生物として用いて個体レベルで明らかにすることを目的として研究を進めてきた。CRMPはCRMP1-5の5つの遺伝子でコードされたホモロジーの高いファミリータンパク質であり、それがヘテロテトラマーを形成して機能している。遺伝子改変マウスはCRMP1,CRMP4のKOマウスとSer522をAlaに1アミノ酸置換したCRMP2のみを有するCRMP2KIマウスを用いて研究を進めた。CRMP1KO;CRMP2KIの大脳皮質の神経細胞は特にbasal dendriteの投射領域が変化する異常が明らかとなり(Yamashitaら2012)、CRMP4KOマウスでは先に報告されたSema3AKOマウスと同様に、海馬CA1の錐体神経細胞のapical dendriteの分岐の異常がそれぞれ観察された(Niisatoら2012)。また、ゼブラフィッシュの胚に遺伝子のノックダウンが可能なCRMPのAMOを導入してその効果を調べたところ、脊髄内感覚神経細胞(RB細胞)の位置の異常がCRMP2, CRMP4AMOで観察され、同様の異常がCdk5AMOで起こることが判った。さらに、Cdk5AMOの異常がCRMP2,4のリン酸化により改善することから、CRMP2,4のリン酸化がRB細胞の位置の決定に重要であることが示唆された(Tanakaら投稿中)。以上より、神経系の発達、特に樹状突起の形成や細胞の位置決定にCRMPのリン酸化が必要であることが、個体レベルで明らかになった。

ゼブラフィッシュ成魚脳を用いた神経幹細胞の増殖・分化の分子機構の解析

2012

Research Results Outline:成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。しかし、神経幹細胞・神経前駆細胞の増殖・分化を制御する分子機構は不成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。しかし、神経幹細胞・神経前駆細胞の増殖・分化を制御する分子機構は不明な点が多い。本研究では、哺乳類に比較して広範囲で神経新生が行われている生物モデルであるゼブラフィ...成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。しかし、神経幹細胞・神経前駆細胞の増殖・分化を制御する分子機構は不明な点が多い。本研究では、哺乳類に比較して広範囲で神経新生が行われている生物モデルであるゼブラフィッシュ成魚を用いて、神経幹細胞の増殖・分化に係わる分子機構の解明を目的とした。我々は眼の視神経の投射先である視蓋における神経新生について研究を行なってきた。マウスなど哺乳類の研究で神経新生への関与が示唆されているシグナル伝達経路が、ゼブラフィッシュ成魚視蓋においてどのように神経幹細胞の増殖・分化に関与するかを、シグナル伝達の阻害剤や遺伝子発現制御により明らかにすることを目指した。 今回の解析では、特にNotchシグナルとWntシグナルに着目して研究を進めた。Notchシグナルの活性化にはリガンドであるNotchのgamma-セクレターゼによる切断が必要であることから、Notchシグナルの阻害剤として用いられる。実験では、gamma-セクレターゼ阻害剤LY450139を飼育水中に加え、BrdU取り込みで細胞増殖を評価することにより、ゼブラフィッシュ成魚視蓋での神経幹細胞増殖を増加させることが明らかとなった。また、Wntシグナルの阻害剤であるIWR1を投与することにより、Wntシグナルの関与を検討したところ、視蓋における細胞増殖は抑制された。逆に、Wntシグナル活性化状態を模倣するGSK3抑制剤の投与により、細胞増殖は増加傾向であった。従って、阻害剤などの薬剤を用いた実験結果より、神経幹細胞増殖・神経前駆細胞に対して、Notchシグナルは抑制的に、Wntシグナルは促進的に働いていることが示唆された。 Wntシグナルに関しては、薬剤投与による実験から得られた結果をさらに検討するため、ヒートショックによりWntシグナルが抑制されるトランスジェニックゼブラフィッシュを用いてさらに検討を行なっている。

成体神経新生促進因子スクリーニングのためのin vivoモニタリング系の開発

2012

Research Results Outline:成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。主に神経前駆細胞を補う細胞療法と、神経新生に係わる因子を用いて、内成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。主に神経前駆細胞を補う細胞療法と、神経新生に係わる因子を用いて、内在性の神経新生機能を促進することで神経再生を成し遂げようとする、神経再生因子療法の2つに大別される...成体脳での神経新生は、失われた神経機能を回復させる神経再生医療の面で注目されている。主に神経前駆細胞を補う細胞療法と、神経新生に係わる因子を用いて、内在性の神経新生機能を促進することで神経再生を成し遂げようとする、神経再生因子療法の2つに大別される。後者の場合、どの様な因子が有用であるかの研究が盛んに行われている。本研究では、生物モデルであるゼブラフィッシュ成魚で神経新生をモニタリング出来るラインを確立し、成体での神経新生促進因子を個体が生きたままスクリーニング出来るシステムを構築することを目的とする。具体的には、神経幹細胞特異的にルシフェラーゼと蛍光タンパク質を発現させ、ルシフェリンを化学発光させ、検出器IVISを用いて生きたままで成体脳での神経新生を経時的にモニタリングする系を確立することを目指した。手法としてはGal4-UASシステムを応用し、神経幹細胞特異的Gal4を発現しているTgゼブラフュッシュとUSAによりルシフェラーゼと蛍光タンパク質の発現が調整されているTgゼブラフィッシュの両系統を交配して得る。神経幹細胞のマーカーであるGFAPの遺伝子発現制御領域下でGal4の改良型であるGFFを発現させるTgライン(GFAP:GFF)を作成した。 このGFAP:GFF Tg fishとUAS-GFP fishと交配したF1を生後3日、1ヵ月、3か月齢でGFPの発現がGFAPの発現と同様であるかを検討した。方法として、1) GFAP-GFP fishでのGFP発現と比較を行う。2) GFAP陽性細胞の別のマーカーであるBLBPの免疫染色で確認した。1),2)の方法により、内在性のGFAP陽性の神経幹細胞と同様の発現を示すTg fishラインが得られたことが確認できた。さらにUAS下にルシフェラーゼと蛍光タンパク質を発現させるコンストラクトを作成した。今後このコンストラクトをGFAP:GFF Tg fishの受精卵に導入して一過性に発現させ、Gal4-UAS systemが機能するかを確認した上で、UAS Tg fishの作成を行なう計画である。

Cdk5の神経機能における役割の解明

2013

Research Results Outline:<研究目的>サイクリン依存性キナーゼ(Cdk)は増殖細胞で細胞周期を制御する最も重要な因子である。Cdk5はCdkのメンバーでありながら、最終分化した<研究目的>サイクリン依存性キナーゼ(Cdk)は増殖細胞で細胞周期を制御する最も重要な因子である。Cdk5はCdkのメンバーでありながら、最終分化した神経細胞で機能するユニークなCdkである。Cdk5の活性化サブユニットであるp35欠損マウスでの空...<研究目的>サイクリン依存性キナーゼ(Cdk)は増殖細胞で細胞周期を制御する最も重要な因子である。Cdk5はCdkのメンバーでありながら、最終分化した神経細胞で機能するユニークなCdkである。Cdk5の活性化サブユニットであるp35欠損マウスでの空間学習記憶の障害を報告した(Ohshima et al., JNC 2005)が、p35欠損マウスには脳形成の異常があり、空間学習記憶の障害が脳形成の異常に起因する可能性がある。H21-23文科省基盤研究C「活性化サブユニットp35コンディショナルKOを用いたCdk5の機能解析」で確立したp35コンディショナルKO(p35cKO)の行動解析を行なうとともに、Cdk5のもう一つのサブユニットであるp39欠損も併せ持つp35KO;p39KOマウスを作製し、脳高次機能を解析することで、Cdk5のキナーゼとしての機能を明らかにすることを目的とした。 <研究結果>p35コンディショナルKOマウスは、タモキシフェン投与により誘導されるタイプのCreERマウスとの交配により確立した。このマウスラインを用いて研究を行なった。タモキシフェンを3日間経口投与し、1週後に脳各部位のp35タンパク質量をコントロールと比較し、p35タンパク質量が顕著に減少していることを確認した。3ヶ月齢以降でタモキシフェンを投与し、p35遺伝子欠損を誘導した。これにより脳構造に異常を有しない状態でのp35遺伝子欠損による機能的変化を調べることが可能となった。これまでにモリス水迷路試験を行ない、空間記憶・学習機能の障害が明らかになっている。現在、その障害の原因となる海馬のシナプス可塑性についての電気生理学的な検討と、生化学的な解析を行なっている。さらに、p39KOマウスと交配することで、誘導型p35cKO;p39KOマウスラインを確立した。今後このマウスラインを用いた研究を行なって行く予定である。

CRMPの神経回路形成および神経再生における役割の解明と脊髄損傷治療への応用

2013

Research Results Outline:【研究目的】中枢神経系損傷に対する決定的な治療法は未だない。そのため、中枢神経系の限られた再生能力の分子機構解明が急がれている。Collapsin-r【研究目的】中枢神経系損傷に対する決定的な治療法は未だない。そのため、中枢神経系の限られた再生能力の分子機構解明が急がれている。Collapsin-response mediator protein (CRMP)は軸索ガイダンス分子であるセマファリ...【研究目的】中枢神経系損傷に対する決定的な治療法は未だない。そのため、中枢神経系の限られた再生能力の分子機構解明が急がれている。Collapsin-response mediator protein (CRMP)は軸索ガイダンス分子であるセマファリンの細胞内シグナル伝達物質として同定され、その後の研究で、軸索伸長などへの関与が示された。CRMPはファミリータンパク質でCRMP1-5が別々の遺伝子にコードされている。これらはヘテロ4量体を形成して機能していると考えられているが、生体内での役割は不明な点が多い。本研究は、CRMP遺伝子の改変マウスを用いて、中枢神経損傷後のCRMPの機能解明を目的とする。我々はこれまでに、CRMP4欠損マウス由来の後根神経節細胞の培養実験では中枢神経系神経再生を阻害する物質に対する反応が減弱していることを見出して報告している(Nagaiら2012)。従って本研究では特にCRMP4欠損(Crmp4-/-)マウスを用いた研究を行なった。【研究成果】野生型マウスの損傷した脊髄において再生阻害活性あるいは細胞毒性のあるCRMP4 のいくつかのformが上昇していることが確認された。こうした結果を踏まえて、本研究ではCrmp4-/-マウスを用いることにより、脊髄損傷後の再生過程におけるCRMP4の機能解明を試みた。脊髄損傷4週間後、Crmp4+/+マウスにおいては損傷部位以降の脊髄神経軸索消失、半身不随が観察されたが、Crmp4-/-マウスの脊髄では神経軸索が長距離にわたり再生し、後肢に加重ができるほど運動機能が回復していることが確認された。組織学的にも、再生する軸索のマーカーであるGAP43の増加が、生化学的および組織学的に示された。従って、CRMP4の機能を阻害することで、脊髄損傷の回復が改善される可能性がin vivoで示された。これらの結果から、CRMP4を標的とした中枢神経系損傷に対する新規治療開発の可能性が示唆された。

Cdk5活性化サブユニットp35の統合失調症への関与の解明

2015

Research Results Outline:統合失調症患者脳の解析からCdk5活性化サブユニットp35タンパク質量の減少が報告された。また、統合失調症患者の神経細胞のスパイン密度が減少しているこ統合失調症患者脳の解析からCdk5活性化サブユニットp35タンパク質量の減少が報告された。また、統合失調症患者の神経細胞のスパイン密度が減少していることが報告されている(Gareyら1993, 1995,1998; Glantz&Lewis...統合失調症患者脳の解析からCdk5活性化サブユニットp35タンパク質量の減少が報告された。また、統合失調症患者の神経細胞のスパイン密度が減少していることが報告されている(Gareyら1993, 1995,1998; Glantz&Lewis 1995, 1996)。本研究では、条件付けp35遺伝子改変マウス(p35cKOマウス)におけるスパイン密度を解析した。その結果、発達期と成熟期のいずれにおいてもスパイン密度が減少していること、さらにその減少が大脳皮質と海馬の神経細胞で観察し、学術誌に報告した(MitaらCerebral cortex2016)。

ゼブラフィッシュにおけるグリア細胞内シグナルと機能連携の可視化

2016

Research Results Outline:成体脳において神経新生が行われる現象は、ヒトを含む哺乳類では限られた脳領域で行なわれているが、ゼブラフィッシュなどの硬骨魚類では、比較的広範囲の脳領域成体脳において神経新生が行われる現象は、ヒトを含む哺乳類では限られた脳領域で行なわれているが、ゼブラフィッシュなどの硬骨魚類では、比較的広範囲の脳領域で行なわれている。本研究では、神経幹細胞であるラジアルグリア細胞の増殖・分化のプロセスと、Ca動態...成体脳において神経新生が行われる現象は、ヒトを含む哺乳類では限られた脳領域で行なわれているが、ゼブラフィッシュなどの硬骨魚類では、比較的広範囲の脳領域で行なわれている。本研究では、神経幹細胞であるラジアルグリア細胞の増殖・分化のプロセスと、Ca動態を可視化することにより、グリア内細胞シグナルと幹細胞増殖・分化の関連を明らかにすることを目的とした。バイオリソースセンターよりGFAP:GCaMP6a導入して、解析を開始した。また、Gal4-UAS系を用いて、GFAP:GalFF Tg fish(Shimizuら2015)とUAS:GCaMP7を交配する予定である。

ゼブラフィッシュ成魚を用いた神経新生の制御メカニズムの解明

2017

Research Results Outline:ヒトなどの哺乳類では成体脳での神経新生が限られた脳部位でのみ起きるのに対して、ゼブラフィッシュなどの硬骨魚類では、多くの脳部位で神経新生が観察される。ヒトなどの哺乳類では成体脳での神経新生が限られた脳部位でのみ起きるのに対して、ゼブラフィッシュなどの硬骨魚類では、多くの脳部位で神経新生が観察される。本研究では、ゼブラフィッシュ成魚脳の損傷時に、どの様な分子メカニズムで神経新生が促されて、損傷が修...ヒトなどの哺乳類では成体脳での神経新生が限られた脳部位でのみ起きるのに対して、ゼブラフィッシュなどの硬骨魚類では、多くの脳部位で神経新生が観察される。本研究では、ゼブラフィッシュ成魚脳の損傷時に、どの様な分子メカニズムで神経新生が促されて、損傷が修復されるかを検討した。その結果、Wntシグナルが神経新生の元になるラジアルグリア(RG)の増殖と神経細胞への分化に関与することを明らかにした(Shimizu et al., Glia 2018)。Wntシグナル以外にも、ShhシグナルやNotchシグナルの関与も示唆されるため、これらのシグナル伝達の関与も検討を進めている。研究成果が、ヒトの神経系の再生医療への応用につながることが期待される。

CRMPタンパク質を標的とした神経損傷・神経変性疾患治療戦略開発

2017

Research Results Outline:CRMPは神経細胞の多く発現しているリン酸化タンパク質で、CRMP1-5のサブタイプがあり、4量体を形成していることが知られている。神経回路形成時に働CRMPは神経細胞の多く発現しているリン酸化タンパク質で、CRMP1-5のサブタイプがあり、4量体を形成していることが知られている。神経回路形成時に働くセマフォリン3Aの細胞内シグナル伝達に関与することが報告されたが、その後様々な軸索ガイダンス分子...CRMPは神経細胞の多く発現しているリン酸化タンパク質で、CRMP1-5のサブタイプがあり、4量体を形成していることが知られている。神経回路形成時に働くセマフォリン3Aの細胞内シグナル伝達に関与することが報告されたが、その後様々な軸索ガイダンス分子のシグナル伝達に関与し、神経損傷の修復や神経疾患への関与が示唆されている。我々は、CRMP4欠損が脊髄損傷からの回復に有利に働くことを報告している。CRMP2を介して機能すると考えられている薬剤LKEが脊髄損傷や神経変性疾患の治療に行こうであるか検討を続けている。また、共同研究により、CRMP2のリン酸化が躁うつ病の治療薬であるリチウムの作用点であることを明らかにした(Tobeet al., 2017)。

インシュリン分泌機構の遺伝子改変マウスを用いた検討と糖尿治療への応用

2008

Research Results Outline:我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を示唆した(WeiらNat. Med 11, 1104, 2005)。Cdk5阻害によるインシュリン...我々は、Cdk5がL-typeカルシウムチャネルのリン酸化を介してインシュリン分泌を負に制御している事を報告し、Cdk5阻害剤の糖尿病治療薬への応用を示唆した(WeiらNat. Med 11, 1104, 2005)。Cdk5阻害によるインシュリン分泌の亢進作用は、高血糖時に顕著となるため、糖尿病薬の副作用である低血糖が起こさず、従来の治療薬とは作用点の異なる薬剤となる可能性がある。2005年の報告の際には、Cdk5活性が低下したマウスモデルとしてp35欠損マウスを用いた。p35はCdk5の活性化サブユニットであり、Cdk5はp35とのヘテロダイマーで活性型となる。p35欠損はCdk5の活性低下を来すが、全身性に遺伝子欠損の影響が出るため、Cdk5活性低下によるインシュリン分泌亢進がベータ細胞での直接的効果である事を示すに至らなかった。この問題をクリアするため、より適切なモデルマウスを作製する必要がある。 本研究では、insulin-promoter下にCdk5DNを発現するトランスジェニック(Tg)マウスラインを確立し、その解析を行った。ラインを確立した4系統のうち2系統でTg由来のCdk5DNタンパク質の膵臓ベータ細胞特異的な発現が確認された。Cdk5DNの発現により、インシュリンの分泌が亢進する事が期待されたが、Tgマウスにおいては、Cdk5DNの発現レベル依存的に、ベータ細胞が減少し、6週齢で糖尿病状態を示した。ベータ細胞の減少が観察される時期を検討した結果、生後10日目には既にラ氏島の縮小とベータ細胞数の減少が認められる事が明らかとなった。今後は、このベータ細胞の減少が、増殖の低下によるものか、アポトーシスなどの細胞死の増加によるものか、検討を行う予定である。今回の研究により、Cdk5活性の低下はベータ細胞の生存にも関与する事が初めて明らかとなった

神経特異的サイクリン依存性キナーゼ5の生理的機能と神経変性疾患における役割の解明

2008

Research Results Outline:目的神経特異的サイクリン依存性キナーゼ5(Cdk5)は、中枢神経系の形成過程や、機能発現に寄与するセリン・スレオニンキナーゼであり、我々は、Cdk5欠目的神経特異的サイクリン依存性キナーゼ5(Cdk5)は、中枢神経系の形成過程や、機能発現に寄与するセリン・スレオニンキナーゼであり、我々は、Cdk5欠損マウスや活性化サブユニットp35欠損マウスの解析を通じて、研究を行ってきた。、Cdk5欠損マウス...目的神経特異的サイクリン依存性キナーゼ5(Cdk5)は、中枢神経系の形成過程や、機能発現に寄与するセリン・スレオニンキナーゼであり、我々は、Cdk5欠損マウスや活性化サブユニットp35欠損マウスの解析を通じて、研究を行ってきた。、Cdk5欠損マウスは胎生致死であり、p35欠損マウスは脳の形成に軽度の異常がある。我々はこれまでにp35欠損マウスにおける記憶・学習の異常を報告したが、異常が脳組織構築の異常によるものか、機能喪失によるものかは結論を得ていない。胎生致死などの解決するため、近年の技術進歩により、時間・空間的に遺伝子の機能喪失を起こさせるコンディショナルKOマウスの技術が、Cre-loxP系を応用して確立されている。我々は、本研究において、p35遺伝子のコンディショナルマウスを作製する事を目的として、p35遺伝子座に2ヶ所loxPを有するマウス(p35-floxマウス)の作成を行った。結果まず、p35遺伝子を含むBACクローンを入手し、ターゲティングコンストラクトを作成し、ES細胞に導入して、相同組換えを起こしたクローンを得た。これをブラストシストへ導入し、キメラマウスを得る事が出来た。このキメラ♂を野生型B6♀マウスと交配して、F1ヘテロマウスを作製する事に成功している。今後は、frtにフランクされたネオマイシン耐性遺伝子を除くために、FLP Tgマウスと交配した後に、ヘテロのp35-loxPマウス同志を交配し、p35-loxPのホモマウスを得たのち、creマウスと交配する事により、コンディショナルKOマウスを得る予定である。結語今回の研究により、p35遺伝子座loxPサイトが導入されたマウスを作製する事に成功し、今後のp35コンディショナルKOマウス作成の基盤が確立できた。

Lecture Course

Course TitleSchoolYearTerm
Science and Engineering Laboratory 1ASchool of Fundamental Science and Engineering2019spring semester
Science and Engineering Laboratory 1A VSchool of Fundamental Science and Engineering2019spring semester
Science and Engineering Laboratory 1ASchool of Creative Science and Engineering2019spring semester
Science and Engineering Laboratory 1A VSchool of Creative Science and Engineering2019spring semester
Science and Engineering Laboratory 1ASchool of Advanced Science and Engineering2019spring semester
Science and Engineering Laboratory 1A VSchool of Advanced Science and Engineering2019spring semester
Science and Engineering Laboratory 1B IISchool of Fundamental Science and Engineering2019fall semester
Science and Engineering Laboratory 1B IISchool of Creative Science and Engineering2019fall semester
Science and Engineering Laboratory 1B IISchool of Advanced Science and Engineering2019fall semester
Introduction to Bioscience A SougoukikaiSchool of Creative Science and Engineering2019spring semester
Introduction to Bioscience A Kagaku, OukaSchool of Advanced Science and Engineering2019spring semester
Biology LaboratorySchool of Fundamental Science and Engineering2019an intensive course(spring)
Biology LaboratorySchool of Creative Science and Engineering2019an intensive course(spring)
Biology LaboratorySchool of Advanced Science and Engineering2019an intensive course(spring)
Life Science and Medical Bio-science Seminar ISchool of Advanced Science and Engineering2019spring semester
Life Science and Medical Bio-science Seminar I [S Grade]School of Advanced Science and Engineering2019spring semester
Anatomy and Histology:LaboratorySchool of Advanced Science and Engineering2019fall semester
Anatomy and Histology:Laboratory [S Grade]School of Advanced Science and Engineering2019fall semester
Developmental BiologySchool of Advanced Science and Engineering2019spring semester
Developmental Biology [S Grade]School of Advanced Science and Engineering2019spring semester
NeuroscienceSchool of Advanced Science and Engineering2019spring semester
Neuroscience [S Grade]School of Advanced Science and Engineering2019spring semester
Life Science and Medical Bio-science Seminar IISchool of Advanced Science and Engineering2019fall semester
Life Science and Medical Bio-science Seminar II [S Grade]School of Advanced Science and Engineering2019fall semester
Introduction to Clinical MedicineSchool of Advanced Science and Engineering2019fall semester
Introduction to Clinical Medicine [S Grade]School of Advanced Science and Engineering2019fall semester
Intermediate Life Science and Medical Bioscience LaboratorySchool of Advanced Science and Engineering2019fall semester
Life Science and Medical Bio-science Laboratory IIISchool of Advanced Science and Engineering2019fall semester
Life Science and Medical Bio-science Laboratory III [S Grade]School of Advanced Science and Engineering2019fall semester
Pharmacology ASchool of Advanced Science and Engineering2019spring quarter
Pharmacology A [S Grade]School of Advanced Science and Engineering2019spring quarter
Graduation ResearchSchool of Advanced Science and Engineering2019full year
Graduation Research [S Grade]School of Advanced Science and Engineering2019full year
Medical GeneticsSchool of Advanced Science and Engineering2019fall semester
Brain NeuroscienceSchool of Advanced Science and Engineering2019spring semester
Life Science and Medical Bio-science Laboratory IVSchool of Advanced Science and Engineering2019spring semester
Life Science and Medical Bio-science Laboratory VSchool of Advanced Science and Engineering2019fall semester
NeuroscienceSchool of Advanced Science and Engineering2019spring semester
Life Science and Medical Bioscience Seminar IISchool of Advanced Science and Engineering2019spring semester
Bioscience Practicals ASchool of Advanced Science and Engineering2019fall semester
Bioscience Practicals BSchool of Advanced Science and Engineering2019spring semester
Graduation Thesis ASchool of Advanced Science and Engineering2019fall semester
Graduation Thesis BSchool of Advanced Science and Engineering2019spring semester
Laboratory for Advanced Science and Engineering ASchool of Advanced Science and Engineering2019spring quarter
Laboratory for Advanced Science and Engineering ASchool of Advanced Science and Engineering2019spring quarter
Laboratory for Advanced Science and Engineering ASchool of Advanced Science and Engineering2019spring quarter
Laboratory for Advanced Science and Engineering BSchool of Advanced Science and Engineering2019summer quarter
Laboratory for Advanced Science and Engineering BSchool of Advanced Science and Engineering2019summer quarter
Laboratory for Advanced Science and Engineering BSchool of Advanced Science and Engineering2019summer quarter
Current Topics in BiosciencesSchool of Advanced Science and Engineering2019fall semester
Current Topics in Biosciences [S Grade]School of Advanced Science and Engineering2019fall semester
Brain Science Lecture AGraduate School of Fundamental Science and Engineering2019fall semester
Brain Science Lecture AGraduate School of Creative Science and Engineering2019fall semester
Brain Science Lecture AGraduate School of Advanced Science and Engineering2019fall semester
Brain Science Lecture AGraduate School of Advanced Science and Engineering2019fall semester
Brain Science Lecture AGraduate School of Advanced Science and Engineering2019fall semester
Brain Science Lecture BGraduate School of Fundamental Science and Engineering2019spring semester
Brain Science Lecture BGraduate School of Creative Science and Engineering2019spring semester
Brain Science Lecture BGraduate School of Advanced Science and Engineering2019spring semester
Brain Science Lecture BGraduate School of Advanced Science and Engineering2019spring semester
Brain Science Lecture BGraduate School of Advanced Science and Engineering2019spring semester
Master's Thesis (Department of Life Science and Medical Bioscience)Graduate School of Advanced Science and Engineering2019full year
Research on Molecular Brain ScienceGraduate School of Advanced Science and Engineering2019full year
Research on Molecular Brain ScienceGraduate School of Advanced Science and Engineering2019full year
Health and Medical Science for Brain and MindGraduate School of Advanced Science and Engineering2019spring semester
Advanced NeuroscienceGraduate School of Advanced Science and Engineering2019spring semester
Advanced NeuroscienceGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Molecular Brain Science AGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Molecular Brain Science AGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Molecular Brain Science BGraduate School of Advanced Science and Engineering2019fall semester
Seminar on Molecular Brain Science BGraduate School of Advanced Science and Engineering2019fall semester
Master's Thesis (Department of Life Science and Medical Bioscience)Graduate School of Advanced Science and Engineering2019full year
Research on Molecular Brain ScienceGraduate School of Advanced Science and Engineering2019full year
Practical Training for Career BuildingGraduate School of Advanced Science and Engineering2019full year
Planning and Research for Advanced Health ScienceGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Advanced Health Science IGraduate School of Advanced Science and Engineering2019full year
Seminar on Advanced Health Science IIGraduate School of Advanced Science and Engineering2019full year
Seminar on Advanced Health Science IIIGraduate School of Advanced Science and Engineering2019full year
Practical Presentation IGraduate School of Advanced Science and Engineering2019full year
Practical Presentation IIGraduate School of Advanced Science and Engineering2019full year
Practical On-the-job TrainingGraduate School of Advanced Science and Engineering2019full year
Introduction of Life Science 01Global Education Center2019spring semester
Introduction of Life Science 02Global Education Center2019spring semester
Medical Volunteer Practice 01Global Education Center2019spring semester
Medical Volunteer Practice 02Global Education Center2019fall semester
Introduction to community medicineGlobal Education Center2019summer

Waseda Course Channel Video Service

Course TitleFacultyPublication Year