Name

YONEDA, Gen

Official Title

Professor

Affiliation

(School of Fundamental Science and Engineering)

Contact Information

Mail Address

Mail Address
yoneda@waseda.jp

URL

Web Page URL

http://www.f.waseda.jp/yoneda/

Grant-in-aids for Scientific Researcher Number
90277848

Sub-affiliation

Sub-affiliation

Faculty of Science and Engineering(Graduate School of Fundamental Science and Engineering)

Affiliated Institutes

理工学総合研究センター

兼任研究員 2003-2006

理工学術院総合研究所(理工学研究所)

兼任研究員 2006-2018

理工学術院総合研究所(理工学研究所)

兼任研究員 2018-

Research Field

Grants-in-Aid for Scientific Research classification

Mathematical and physical sciences / Mathematics / Foundations of mathematics/Applied mathematics

Paper

Formulation Problem of the Einstein Equation for Numerical Simulations

Hyperbolic Problems: Theory, Numerics and Applicationsis

Formulation problem in numerical relativity

Bulletin of the Japan Society for Industrial and Applied Mathematics 15(1) p.1 - 152005/03-

Constraint propagation in N+1 dimensional space-time

General Relativity and Gravitation 36(8) p.1931 - 19372004/08-

Diagonalizability of Constraint Propagation Matrices

Class. Quantum Grav. 20, L31-L362003/02-

Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system

Physical Review D 66, 124003 2002-

Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime

Classical and Quantum Gravity 19, pp.1027-10492002-

Constraint propagation in the family of ADM systems

Physical Review D 63, 1240192001-

Hyperbolic formulations and numerical relativity II: Asymptotically constrained system of the Einstein equation

Classical and Quantum Gravity 18, pp.441-462 2001-

Hyperbolic formulations and numerical relativity : Experiments using Ashtekar's connection variables

Classical and Quantum Gravity 17, pp.4799-48222000-

Constraint propagation of C-2-adjusted formulation: Another recipe for robust ADM evolution system

Tsuchiya, Takuya;Yoneda, Gen;Shinkai, Hisa-aki

PHYSICAL REVIEW D 83(6) 2011-2011

DOIWoS

Detail

ISSN:1550-7998

Constraint propagation of C-2-adjusted formulation. II. Another recipe for robust Baumgarte-Shapiro-Shibata-Nakamura evolution system

Tsuchiya, Takuya;Yoneda, Gen;Shinkai, Hisa-aki

PHYSICAL REVIEW D 85(4) 2012-2012

DOIWoS

Detail

ISSN:1550-7998

Some Asymptotic Conditions of Worldlines in Minkowski Space

Yoneda Gen;Ishigami Yoshiyasu;Arima Satoshi

Journal of the Physical Society of Japan 62(5)

CiNii

Detail

ISSN:0031-9015

Some Asymptotic Conditions of Worldlines in Minkowski Space. II

Yoneda Gen

Journal of the Physical Society of Japan 63(9)

CiNii

Detail

ISSN:0031-9015

Constraint Propagation of C^2-adjusted formulation

Takuya Tsuchiya, Gen Yoneda and Hisa-aki Shinkai

Constraint Propagation of $C^2$-adjusted Formulation II -- Another Recipe for Robust BSSN Evolution System

Takuya Tsuchiya, Gen Yoneda and Hisa-aki Shinkai

Phys. Rev. D 85, 044018 (2012) Peer Review Yes

Constructing of constraint preserving scheme for Einstein equations

Takuya Tsuchiya and Gen Yoneda

JSIAM Letters Vol.9, pp.57-60 (2017)

Analyzing time evolution of constraint equations of Einstein's equation

Ryosuke Urakawa, Takuya Tsuchiya, Gen Yoneda

JSIAM Letters Vol.11, pp.21-24 (2019)

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:

Algebro-analytical study on special functions appeared in number theory

2003-2006

Allocation Class:¥2500000

Research Classification:

Boundary conditions for gavge coupled Dirac operators and their invariants.

1997-1998

Allocation Class:¥2800000

Research Classification:

Numerical Investigations of Singularities in Higher-Dimensional Space-time

2010-2013

Allocation Class:¥3640000

Research Classification:

Formulation of Einstein equation for stable numerical simulation

2004-2007

Allocation Class:¥2350000

Research Classification:

Numerical Investigations of Singularities in Higher-Dimensional Space-time

2010/-0-2014/-0

Allocation Class:¥3640000

Research Classification:

Formulation of Einstein equation for stable numerical simulation

Allocation Class:¥2350000

Research Classification:

Study on special functions in q-analysis

Allocation Class:¥2100000

On-campus Research System

Special Research Project

Hamilton構造をもった数値安定なEinstein方程式の構築

2017

Research Results Outline:Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展方程式に束縛条件を付加する方法について,従来より汎用的な方法を提案した.これにより,背景時空が非平...Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展方程式に束縛条件を付加する方法について,従来より汎用的な方法を提案した.これにより,背景時空が非平坦な場合や,近い背景時空が無い場合についても,束縛条件を付加したときの効果が事前に予測できるようになった.これらの成果を挙げて,発表を行った.また束縛条件を離散方程式においても保存する,いわゆる構造保存形にスキームについても研究し,Maxwell方程式を土台として構築し成果を挙げて発表した.

安定な数値シミュレーションを行うためのEinstein方程式の定式化

2003

Research Results Outline:安定な数値シミュレーションを行うためのEinstein方程式の定式化について,束縛条件発展方程式の固有値解析が有効であることを理論,数値計算両面から確安定な数値シミュレーションを行うためのEinstein方程式の定式化について,束縛条件発展方程式の固有値解析が有効であることを理論,数値計算両面から確かめた.メキシコで行われた数値相対論の国際会議において成果を講演した.また,高次元数値相対論につい...安定な数値シミュレーションを行うためのEinstein方程式の定式化について,束縛条件発展方程式の固有値解析が有効であることを理論,数値計算両面から確かめた.メキシコで行われた数値相対論の国際会議において成果を講演した.また,高次元数値相対論についての真貝寿昭との共著を執筆し掲載決定した.その概要は以下の通りである.従来の4次元時空モデルより高い次元の時空モデルは,様々な解釈を提供し,かつ異なるダイナミックな面を持っている.そのような最近の興味による高次元時空の数値相対論の研究のために,束縛条件の時間発展における振る舞いの次元の依存を調べる.N+1 Arnowitt-Deser-Misner進化方程式にはNに依存する物質項があります、しかし、束縛条件と束縛条件発展方程式は空間次元に不変の形式を持つ.これは我々が,4次元の場合のそうだったように,N+1次元数値相対論において,安定性,正確さについての問題があることを示唆するものである.しかし同時に,従来の束縛条件発展方程式の解析が,高次元においても有用であることも分かる.

有限要素法によるEinstein方程式の数値シミュレーション

2009

Research Results Outline:Einstein方程式の数値シミュレーションを安定させるための方法の1つとして,発展方程式への拘束条件の付加について研究した.その結果,つぎのような利Einstein方程式の数値シミュレーションを安定させるための方法の1つとして,発展方程式への拘束条件の付加について研究した.その結果,つぎのような利点を持つ方法を開発した.従来の方法では事前評価時に背景を仮定する必要があったが,新しい方法では,背...Einstein方程式の数値シミュレーションを安定させるための方法の1つとして,発展方程式への拘束条件の付加について研究した.その結果,つぎのような利点を持つ方法を開発した.従来の方法では事前評価時に背景を仮定する必要があったが,新しい方法では,背景に依らずに事前評価が可能になった.この方法をEinstein方程式の数値シミュレーションへ適用する方法を提示し,その効果を実証した.

有限要素法によるEinstein方程式の数値シミュレーション

2010

Research Results Outline:Einstein方程式の数値シミュレーションにおける安定性について,全般的に考察,研究した.まず束縛条件の2乗和積分を定義し,それを利用して発展方程式Einstein方程式の数値シミュレーションにおける安定性について,全般的に考察,研究した.まず束縛条件の2乗和積分を定義し,それを利用して発展方程式への拘束条件の付加をする方法について,理論的かつ実証的に研究し,有効性が確認できたので,学会発表と...Einstein方程式の数値シミュレーションにおける安定性について,全般的に考察,研究した.まず束縛条件の2乗和積分を定義し,それを利用して発展方程式への拘束条件の付加をする方法について,理論的かつ実証的に研究し,有効性が確認できたので,学会発表と論文発表を行った.また有限要素法によるシミュレーションへの応用も検討した.

数値相対論における動的なラグランジェ乗数係数を用いた安定な形式の構築

2012Collaborator:土屋 拓也

Research Results Outline:Einstein方程式の数値シミュレーションを行う際には,様々な工夫が必要である.現在の世界の数値相対論では,状況に応じて,様々な工夫を施しながら得たEinstein方程式の数値シミュレーションを行う際には,様々な工夫が必要である.現在の世界の数値相対論では,状況に応じて,様々な工夫を施しながら得たい精度まで達するように試行錯誤するという作戦が主なものである.しかし,なるべく汎用的に,長時間安定...Einstein方程式の数値シミュレーションを行う際には,様々な工夫が必要である.現在の世界の数値相対論では,状況に応じて,様々な工夫を施しながら得たい精度まで達するように試行錯誤するという作戦が主なものである.しかし,なるべく汎用的に,長時間安定的かつ高精度な数値結果を得るためにどのような方法が可能か調査研究と検証を行った.その結果,他の方法に比べ,比較的汎用的に効果のあるconstraintを使用した補正方法に注目した.従来の研究では,定数に固定されていた補正係数を,時間とともに変化するように制御するための,様々な作戦を検討し,実証を行った.constraintの破れ量に対応して,柔軟に補正の大きさをコントロールする方法が数値的安定性に効果の高いことが分かった.具体的にはconstraintの破れが小さいときは補正の大きさをゼロとし,破れが歩いていど大きくになるまでは,指数的に補正も大きくするが,ある程度以上に破れが大きいときは別の補正方法に切り替える作戦である.効果があることは大体わかったが,これを下支えする理論,あるいは系統的にこの作戦を行う処方箋などについては,いまだ未完成であり,これが完成した時点で学会発表,論文投稿したいと考えている.また,constraintの破れ量に応じた制御ではなく,時間発展スキームとも関連した制御方法も検討して,研究実証を行っているところである.本来は双曲型微分方程式である時間発展方程式が,状況によってはそうでなくなり,放物型などに変化することがある.そうなると,Courant条件などが変わってきてしまうので,数値計算の破綻につながるという可能性がある.それを避けるために,動的に補正係数を変化させたり,時間と空間の刻み幅を変化させたりする方法も検討した.まだ試行錯誤の段階で,発表できるような成果には至っていないが,検討的に研究調査すれば必ず成果が得られそうだという感触を得るまでにいたっている.

(N+1)次元Einstein方程式の解とその埋め込まれたN次元超曲面の解析

2013

Research Results Outline:(N+1)次元のEinstein方程式をN次元超平面の時間発展として解析していくためには,数値解析による手法が不可欠である.数値解析をするためには,連(N+1)次元のEinstein方程式をN次元超平面の時間発展として解析していくためには,数値解析による手法が不可欠である.数値解析をするためには,連続の方程式であるEinstein方程式を差分方程式に直す必要がある.これには従来ではCrank-N...(N+1)次元のEinstein方程式をN次元超平面の時間発展として解析していくためには,数値解析による手法が不可欠である.数値解析をするためには,連続の方程式であるEinstein方程式を差分方程式に直す必要がある.これには従来ではCrank-Nicolson法やRunge-Kutta法がよく用いられている.しかしこれらは,他の方程式に対して安定的に数値解析可能なように開発された方法であり,Einstein方程式のために開発されたものではない.ある近似の範囲でEinstein方程式が有する性質を仮定して有効性が認められるのみである.具体的にはconstraintが保存するという意味で構造保存の性質を有していない.Einstein方程式の数値解析が必要とされる一般相対論的が支配的な状況では,強い重力場や長時間の時間発展などを扱う.その場合に上記の近似が無意味になり,数値解析をする時の最大の問題となるのはconstraintの破れである.よって,構造保存の差分方程式を開発することは重要である.そこでDiscrete variational Derivative Method(DVDM)という方法を使って,アインシュタイン方程式の差分化を行った.最初にHamiltonian形式である必要があるので,Original Arnowitt-Deser-Misner形式をベースにした.DVDMを用いる例としては,2階微分を含む非線形の方程式では例がないので,それらの扱いを可能にする工夫を要した.その結果,構造保存の性質を持った差分化に成功した.数値解析によりその有効性を実験的に確かめた.また,同様なことをマクスウェルの方程式についても行い,従来の差分方程式と今回作成した差分方程式の違いを明瞭にした.これらの結果を応用数理学会(JSIAM),日本数学会(JMS),一般素体論と重力研究会(JGRG)において発表した.(発表は連携研究者の土屋拓也氏.)また結果をまとめたものを論文投稿中である.

離散変分法を用いた数値安定な離散Einstein方程式の構築

2014

Research Results Outline:アインシュタイン方程式は時空分解すれば,拘束条件つき時間発展方程式であり,数値シミュレーションする際は,スキームが必要となる.これを構造保存型にするこアインシュタイン方程式は時空分解すれば,拘束条件つき時間発展方程式であり,数値シミュレーションする際は,スキームが必要となる.これを構造保存型にすることで数値シミュレーションの安定化を図るのが目的である.離散変分法を用いて,アインシュタイン方程式の...アインシュタイン方程式は時空分解すれば,拘束条件つき時間発展方程式であり,数値シミュレーションする際は,スキームが必要となる.これを構造保存型にすることで数値シミュレーションの安定化を図るのが目的である.離散変分法を用いて,アインシュタイン方程式の構造保存型スキームを得ることに成功した.論文は投稿したが,実効性の検証が不十分だという理由で,差し戻されて改良,実証実験を実行中である.また,離散変分法を用いる際,2階微分の扱いに自由度があり,これがスキームの一意性を阻害していることが分かった.この点を考察,改良しつつ,論文発表,学会発表を計画している.

Hamilton構造をもった数値安定なEinstein方程式の構築

2015Collaborator:Takuya Tsuchiya

Research Results Outline:一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミ一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミクスを追うのは,数値シミュレーションに頼るところが多い.この成果は重力波の観測成功などで大きな成果...一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミクスを追うのは,数値シミュレーションに頼るところが多い.この成果は重力波の観測成功などで大きな成果を挙げている.時空の場の方程式であるアインシュタイン方程式を時間と空間に分解したあと,離散化して数値スキームを作成する.そのときに用いられる方法は,他の方程式に特化して作成されたスキームを借用することが多い.そのため,構造保存型になっておらず,時間発展と共に拘束条件の破れが発生してしまう.そこでアインシュタイン方程式を数値シミュレーションをするための,構造保存型スキームの作成を目的として研究した.ハミルトニアンの正準形式を先に離散化し,それから時間発展方程式を求めていくという手法をとる離散変分法が知られている.この離散変分法を用いて,アインシュタイン方程式のスキーム作成に取り組んでいるが,まだ完全なものは得られていない.拘束条件つきの時間発展方程式の類題として,電磁気学の基礎方程式であるマクスウェルの方程式について,離散変分法を用いて構造保存型のスキームの作成に成功した.これは,拘束条件つきの時間発展方程式としては,初めて離散変分法を適用した例である.しかし,単に離散変分法を用いるだけでなく,様々な工夫も必要だということも分かった.これらの成果について,学会発表,論文投稿を行った.これをステップアップし,アインシュタイン方程式のスキーム作成にとりかかっている.だがマクスウェル方程式とアインシュタイン方程式では,ハミルトニアンの段階で,やや異なった構造を持っており,マクスウェル方程式で成功した離散変分法をそのまま適用するだけでは,部分的には成功するものの,完全な構造保存のスキームは出来ないことも分かった.現在その改良に取り組んでいるところである.

Hamilton構造をもった数値安定なEinstein方程式の構築

2015Collaborator:土屋拓也

Research Results Outline:一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミ一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミクスを追うのは,数値シミュレーションに頼るところが多い.この成果は重力波の観測成功などで大きな成果...一般相対性理論の基礎方程式であるアインシュタイン方程式は非線形偏微分方程式なので,特殊な対称性を課さない限り厳密解を得るのは難しい.特に時空のダイナミクスを追うのは,数値シミュレーションに頼るところが多い.この成果は重力波の観測成功などで大きな成果を挙げている.時空の場の方程式であるアインシュタイン方程式を時間と空間に分解したあと,離散化して数値スキームを作成する.そのときに用いられる方法は,他の方程式に特化して作成されたスキームを借用することが多い.そのため,構造保存型になっておらず,時間発展と共に拘束条件の破れが発生してしまう.そこでアインシュタイン方程式を数値シミュレーションをするための,構造保存型スキームの作成を目的として研究した.ハミルトニアンの正準形式を先に離散化し,それから時間発展方程式を求めていくという手法をとる離散変分法が知られている.この離散変分法を用いて,アインシュタイン方程式のスキーム作成に取り組んでいるが,まだ完全なものは得られていない.拘束条件つきの時間発展方程式の類題として,電磁気学の基礎方程式であるマクスウェルの方程式について,離散変分法を用いて構造保存型のスキームの作成に成功した.これは,拘束条件つきの時間発展方程式としては,初めて離散変分法を適用した例である.しかし,単に離散変分法を用いるだけでなく,様々な工夫も必要だということも分かった.これらの成果について,学会発表,論文投稿を行った.これをステップアップし,アインシュタイン方程式のスキーム作成にとりかかっている.だがマクスウェル方程式とアインシュタイン方程式では,ハミルトニアンの段階で,やや異なった構造を持っており,マクスウェル方程式で成功した離散変分法をそのまま適用するだけでは,部分的には成功するものの,完全な構造保存のスキームは出来ないことも分かった.現在その改良に取り組んでいるところである.

Hamilton構造をもった数値安定なEinstein方程式の構築

2016

Research Results Outline:Einstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造をEinstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造を持つMaxwell方程式について適切な離散式の構築に成功し,成果発表をした.さらにEinstein...Einstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造を持つMaxwell方程式について適切な離散式の構築に成功し,成果発表をした.さらにEinstein方程式について,特に時間発展のみに着目した限定的な意味での適切な離散式の構築に成功し,成果発表を行った.また,Einstein方程式の時間発展式に拘束条件を加える手法についても,従来の研究を推し進め,非平坦背景での拘束伝搬方程式の固有値を求め,数値安定性との一致についての結果を得て,成果発表を行った.

Hamilton構造をもった数値安定なEinstein方程式の構築

2016

Research Results Outline:Einstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造をEinstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造を持つMaxwell方程式について適切な離散式の構築に成功し,成果発表をした.さらにEinstein...Einstein方程式の数値シミュレーションを行う時の,適切な離散式を構築を目的として研究した.同じ束縛条件つき時間発展問題,という意味で同様の構造を持つMaxwell方程式について適切な離散式の構築に成功し,成果発表をした.さらにEinstein方程式について,特に時間発展のみに着目した限定的な意味での適切な離散式の構築に成功し,成果発表を行った.また,Einstein方程式の時間発展式に拘束条件を加える手法についても,従来の研究を推し進め,非平坦背景での拘束伝搬方程式の固有値を求め,数値安定性との一致についての結果を得て,成果発表を行った.

Hamilton構造をもった数値安定なEinstein方程式の構築

2017

Research Results Outline:Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展方程式に束縛条件を付加する方法について,従来より汎用的な方法を提案した.これにより,背景時空が非平...Einstein方程式の数値シミュレーションを行う時の,適切な方程式および離散方程式の構築を目的として研究した.束縛条件の破れを抑えるために,時間発展方程式に束縛条件を付加する方法について,従来より汎用的な方法を提案した.これにより,背景時空が非平坦な場合や,近い背景時空が無い場合についても,束縛条件を付加したときの効果が事前に予測できるようになった.これらの成果を挙げて,発表を行った.また束縛条件を離散方程式においても保存する,いわゆる構造保存形にスキームについても研究し,Maxwell方程式を土台として構築し成果を挙げて発表した.

Einstein方程式に特化した離散化手法の研究

2018

Research Results Outline:Einstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) EinsteiEinstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) Einstein方程式を差分方程式にする際に適した差分化の方法を探す.(2) 発展方程式に拘束条件の破れを加える...Einstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) Einstein方程式を差分方程式にする際に適した差分化の方法を探す.(2) 発展方程式に拘束条件の破れを加えることでより安定的な数値計算を可能にする.(1)について成果は,Einstein方程式の2次摂動まで考慮した数値計算を行う際の,差分化の工夫を行い,精度向上することを確かめた.(2)については,拘束伝搬方程式の係数行列に非平坦な時空を代入してから,数値計算により固有値を求め,その値が数値計算の安定性と密接に関連していることを確かめた.

Einstein方程式に特化した離散化手法の研究

2018Collaborator:土屋拓也

Research Results Outline:Einstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) EinsteiEinstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) Einstein方程式を差分方程式にする際に適した差分化の方法を探す.(2) 発展方程式に拘束条件の破れを加える...Einstein方程式の数値シミュレーションの精度向上を目指して研究した.今年度は,主に次の2つの方法について調査研究を行った.(1) Einstein方程式を差分方程式にする際に適した差分化の方法を探す.(2) 発展方程式に拘束条件の破れを加えることでより安定的な数値計算を可能にする.(1)について成果は,Einstein方程式の2次摂動まで考慮した数値計算を行う際の,差分化の工夫を行い,精度向上することを確かめた.(2)については,拘束伝搬方程式の係数行列に非平坦な時空を代入してから,数値計算により固有値を求め,その値が数値計算の安定性と密接に関連していることを確かめた.

Hamilton構造をもった数値安定なEinstein方程式の構築

2019Collaborator:土屋 拓也

Research Results Outline:当研究の目的はEinstein方程式を数値的に解くときに適した離散化の方法を見つけることにある。数値的に解こうとするとき、Einstein方程式の大き当研究の目的はEinstein方程式を数値的に解くときに適した離散化の方法を見つけることにある。数値的に解こうとするとき、Einstein方程式の大きな特徴は2つあり、1つは非線形性が強いこと、1つは1st classの束縛条件があることである。前...当研究の目的はEinstein方程式を数値的に解くときに適した離散化の方法を見つけることにある。数値的に解こうとするとき、Einstein方程式の大きな特徴は2つあり、1つは非線形性が強いこと、1つは1st classの束縛条件があることである。前者は数値的な安定性に関係し、後者は束縛条件の破れに関係する。特に後者について、離散化の良し悪しを評価する方法としてConstraint Accuracy Order(CAO)という方法を提案した。学会発表する予定であったが、学会が中止となってしまったので、2020年度以降に成果発表したい。このCAOを用いて、既存の様々な離散化手法に適用・評価し、数値実験でその実用性を確かめることに成功した。

複素多様体上の一般相対論と特異点構造

1996

Research Results Outline: 従来の数値相対論の方法であるADM形式と比較して、Ashtekar形式の特長の一つに変数の逆数を含まないという利点がある。この利点により縮退点通過の 従来の数値相対論の方法であるADM形式と比較して、Ashtekar形式の特長の一つに変数の逆数を含まないという利点がある。この利点により縮退点通過の計算が可能になるのではないかと考えた。解析的な研究の結果、縮退点を直接通過しようとする方法では、変... 従来の数値相対論の方法であるADM形式と比較して、Ashtekar形式の特長の一つに変数の逆数を含まないという利点がある。この利点により縮退点通過の計算が可能になるのではないかと考えた。解析的な研究の結果、縮退点を直接通過しようとする方法では、変数またはその微分の一部が必ず発散することが分かった。そこで、変数を一時的に複素に拡張することで、縮退点を回避しながら計算し、また実領域に戻ってくる方法を考案した。これらについて縮退点通過の判定条件を設定し、実際に数値計算を試みた。その結果、縮退点を直接通過しようとする方法ではやはり計算は適切に機能しないことが分かった。そして、複素拡張による縮退点回避の方法では、その回避の仕方により適切に機能する場合としない場合が混在して存在することが、確かめられた。この計算により、Ashtekar形式と複素拡張による縮退点回避のテクニックを組み合わせた方法により、縮退点通過が可能だと結論づけられる。解が離散的になるのは、本来片側にしか課さない境界条件を両側に課したことが原因であろう。どのような回避の仕方の時に計算が適切に機能するかは現在調査検討中である。また、同様の試みをADM形式を使って行ってみたところ、解の分布に若干の違いが認められるが、Ashtekar形式による場合と概ね同様に通過が成功するものが発見された。これらの結果より、ここでの縮退点通過のポイントは複素拡張による縮退点回避だと結論づけられる。このような結果をまとめる論文を投稿準備中であるが、離散的に存在する解について、固有値問題特有の保存チャージを見つけることが出来れば、さらに価値あるものになると思うので、研究中である。

Lecture Course

Course TitleSchoolYearTerm
Vector Analysis (FSE) 1School of Fundamental Science and Engineering2020spring semester
Seminar in Mathematics ASchool of Fundamental Science and Engineering2020spring semester
Seminar in Mathematics A [S Grade]School of Fundamental Science and Engineering2020spring semester
Seminar in Mathematics BSchool of Fundamental Science and Engineering2020fall semester
Seminar in Mathematics B [S Grade]School of Fundamental Science and Engineering2020fall semester
Introduction to Computing SystemsSchool of Fundamental Science and Engineering2020spring semester
Introduction to Computing SystemSchool of Fundamental Science and Engineering2020spring semester
Special Exercise on MathematicsSchool of Fundamental Science and Engineering2020fall semester
Symbolic and Algebraic ComputationSchool of Fundamental Science and Engineering2020fall semester
Symbolic and Algebraic ComputationSchool of Fundamental Science and Engineering2020fall semester
Supplementary Seminar in Mathematics ASchool of Fundamental Science and Engineering2020spring semester
Supplementary Seminar in Mathematics BSchool of Fundamental Science and Engineering2020fall semester
Undergraduate ResearchSchool of Fundamental Science and Engineering2020full year
Seminar in Applied Mathematics ASchool of Fundamental Science and Engineering2020spring semester
Seminar in Applied Mathematics A [S Grade]School of Fundamental Science and Engineering2020spring semester
Seminar in Applied Mathematics BSchool of Fundamental Science and Engineering2020fall semester
Seminar in Applied Mathematics B [S Grade]School of Fundamental Science and Engineering2020fall semester
Vector Analysis and GeometrySchool of Fundamental Science and Engineering2020fall semester
Mathematics for PhysicsSchool of Fundamental Science and Engineering2020fall semester
Research Project BSchool of Fundamental Science and Engineering2020spring semester
Research Project B [S Grade]School of Fundamental Science and Engineering2020spring semester
Research Project CSchool of Fundamental Science and Engineering2020fall semester
Research Project C [S Grade]School of Fundamental Science and Engineering2020fall semester
Research Project ASchool of Fundamental Science and Engineering2020fall semester
Research Project DSchool of Fundamental Science and Engineering2020spring semester
Advanced Topic in Modern Mathematical Sciences 1School of Fundamental Science and Engineering2020fall quarter
Advanced Topic in Modern Mathematical Sciences 2School of Fundamental Science and Engineering2020winter quarter
Mathematics C KagakuSchool of Advanced Science and Engineering2020spring semester
Mathematics C Densei2School of Advanced Science and Engineering2020spring semester
Master's Thesis (Department of Pure and Applied Mathematics)Graduate School of Fundamental Science and Engineering2020full year
Master's Thesis (Department of Applied Mechanics)Graduate School of Fundamental Science and Engineering2020full year
Research on Theory of RelativityGraduate School of Fundamental Science and Engineering2020full year
Research on Relativity TheoryGraduate School of Fundamental Science and Engineering2020full year
Topics in Theory of Relativity BGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Theory of Relativity AGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Theory of Relativity BGraduate School of Fundamental Science and Engineering2020fall semester
Seminar on Theory of Relativity CGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Theory of Relativity DGraduate School of Fundamental Science and Engineering2020fall semester
Seminar on Theory of Relativity AGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Numerical Relativity AGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Theory of Relativity BGraduate School of Fundamental Science and Engineering2020fall semester
Seminar on Numerical Relativity BGraduate School of Fundamental Science and Engineering2020fall semester
Seminar on Theory of Relativity CGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Numerical Relativity CGraduate School of Fundamental Science and Engineering2020spring semester
Seminar on Theory of Relativity DGraduate School of Fundamental Science and Engineering2020fall semester
Seminar on Numerical Relativity DGraduate School of Fundamental Science and Engineering2020fall semester
Research on Applied MathematicsGraduate School of Fundamental Science and Engineering2020full year
Master's Thesis (Department of Pure and Applied Mathematics)Graduate School of Fundamental Science and Engineering2020full year
Research on Relativity TheoryGraduate School of Fundamental Science and Engineering2020full year

Waseda Course Channel Video Service

Course TitleFacultyPublication Year