氏名

ジョウ ジェンビン

周 建斌

職名

次席研究員(研究院講師) (https://researchmap.jp/7000017440/)

所属

(理工学術院総合研究所)

学歴・学位

学位

博士

論文

Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases

Sakti, Aditya Wibawa; Nishimura, Yoshifumi; Chou, Chien Pin; Nakai, Hiromi; Nakai, Hiromi; Nakai, Hiromi; Nakai, Hiromi

Journal of Physical Chemistry A122(1)p.33 - 402018年01月-2018年01月 

DOIScopus

詳細

ISSN:10895639

概要:© 2017 American Chemical Society. The structural, dynamical, and energetic properties of the excess proton in ice were studied using density-functional tight-binding molecular dynamics simulations. The ice systems investigated herein consisted of low-density hexagonal and cubic crystalline variants (ice I h and I c ) and high-density structures (ice III and melted ice VI). Analysis of the temperature dependence of radial distribution function and bond order parameters served to characterize the distribution and configuration of hundreds of water molecules in a unit cell. We confirmed that ice I h and I c possess higher hexagonal symmetries than ice III and melted ice VI. The estimated Grotthuss shuttling diffusion coefficients in ice were larger than that of liquid water, indicating a slower proton diffusion process in high-density structures than in low-density systems. The energy barriers calculated on the basis of the Arrhenius plot of diffusion coefficients were in reasonable agreement with experimental measurement for ice I h . Furthermore, the energy barriers for high-density structures were several times larger than those of low-density systems. The simulation results were likely related to the suppression of proton transfer in disordered water configurations, in particular, ice with low hexagonal symmetry.