氏名

サカグチ カツヒサ

坂口 勝久

職名

准教授(任期付)

所属

(大学院先進理工学研究科)

連絡先

メールアドレス

メールアドレス
katsuhisa@aoni.waseda.jp

住所・電話番号・fax番号

住所
〒162-8280新宿区 若松町2−2 TWIns 03C204
電話番号
03-5369-7331
fax番号
03-5269-9062

URL等

研究者番号
70468867

本属以外の学内所属

学内研究所等

医療レギュラトリ―サイエンス研究所

研究所員 2015年-

理工学術院総合研究所

兼任研究員 2019年-

学歴・学位

学位

博士(工学) 課程 早稲田大学 知能機械学・機械システム

研究シーズ

脳動脈瘤の再現モデル装置

シーズ分野:ライフサイエンス

人工臓器作製のための人工血管ユニット

シーズ分野:ライフサイエンス

論文

Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro

Haraguchi, Yuji;Shimizu, Tatsuya;Sasagawa, Tadashi;Sekine, Hidekazu;Sakaguchi, Katsuhisa;Kikuchi, Tetsutaro;Sekine, Waki;Sekiya, Sachiko;Yamato, Masayuki;Umezu, Mitsuo;Okano, Teruo

NATURE PROTOCOLS7(5)p.850 - 8582012年-2012年

DOIWoS

詳細

ISSN:1754-2189

In Vitro Engineering of Vascularized Tissue Surrogates

Sakaguchi, Katsuhisa;Shimizu, Tatsuya;Horaguchi, Shigeto;Sekine, Hidekazu;Yamato, Masayuki;Umezu, Mitsuo;Okano, Teruo

SCIENTIFIC REPORTS32013年-2013年

DOIWoS

詳細

ISSN:2045-2322

概要::In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models.

In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels

Sekine, Hidekazu;Shimizu, Tatsuya;Sakaguchi, Katsuhisa;Dobashi, Izumi;Wada, Masanori;Yamato, Masayuki;Kobayashi, Eiji;Umezu, Mitsuo;Okano, Teruo

NATURE COMMUNICATIONS42013年-2013年

DOIWoS

詳細

ISSN:2041-1723

Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering

Sakaguchi, Katsuhisa;Shimizu, Tatsuya;Okano, Teruo

JOURNAL OF CONTROLLED RELEASE205p.83 - 882015年-2015年

PubMedDOIWoS

詳細

ISSN:0168-3659

概要::Construction of three-dimensional (3D) tissues with pre-isolated cells is a promising achievement for novel medicine and drug-discovery research. Our laboratory constructs 3D tissues with an innovative and unique method for layering multiple cell sheets. Cell sheets maintain a high-efficiently regenerating function, because of the higher cell density and higher transplantation efficiency, compared to other cell-delivery methods. Cell sheets have already been applied in clinical applications for regenerative medicine in treating patients with various diseases. Therefore, in our search to develop a more efficient treatment with cell sheets, we are constructing 3D tissues by layering cell sheets. Native animal tissues and organs have an abundance of capillaries to supply oxygen and nutrients, and to remove waste molecules. In our investigation of vascularized cardiac cell sheets, we have found that endothelial cells within cell sheets spontaneously form blood vessel networks as in vivo capillaries. To construct even thicker 3D tissues by layering multiple cell sheets, it is critical to have a medium or blood flow within the vascular networks of the cell sheets. Therefore, to perfuse medium or blood in the cell sheet vascular network to maintain the viability of all cells, we developed two types of vascular beds; (1) a femoral muscle-based vascular bed, and (2) a synthetic collagen gel-based vascular bed. Both vascular beds successfully provide the critical flow of culture medium, which allows 12-layer cell sheets to survive. Such bioreactor systems, when combined with cell sheet engineering techniques, have produced functional vascularized 3D tissues. Here we explain and discuss the various processes to obtain vascular networks by properly connecting cell sheets and the engineering of 3D tissues.

3D組織構築のためのバイオリアクタの開発

坂口 勝久;清水 達也

人工臓器44(1)p.57 - 612015年-2015年

CiNii

詳細

ISSN:0300-0818

細胞シート技術を用いた立体組織再生

坂口 勝久

日本画像学会誌55(1)p.83 - 872016年-2016年

CiNii

詳細

ISSN:1344-4425

概要:近年,ES細胞やiPS細胞の開発や発見により組織工学の治療応用,または薬剤スクリーニング応用する研究が急速に発展してきている.細胞をコラーゲンゲルなどの細胞外マトリックスに播種して組織構築するトップダウン方式や,ファイバーやスフェロイドの細胞塊組み上げて行くボトムアップ方式など様々な組織工学技術が開発されている.当研究所では温度に応答して細胞が剥離出来る培養皿を使用して細胞をシート状に加工し,積層することで新規ボトムアップ方式の組織工学技術として立体組織構築を試みた.しかしながら,単に細胞シートを積層して厚さを増加させるだけでは内部が壊死を起こしてしまうため,我々は細胞シートに内皮細胞を含有させて血管網を構築し,その血管網にバイオリアクタを用いて灌流できる手法を考案した.本稿では生体内で繰り返し移植することで細胞シートを積層する手法,ならびに生体外で細胞シート内の血管網に培養液を流し細胞シートを積層する手法である立体臓器再生法を解説する.

Time course of cell sheet adhesion to porcine heart tissue after transplantation

Chang, Dehua; Chang, Dehua; Shimizu, Tatsuya; Haraguchi, Yuji; Gao, Shuai; Sakaguchi, Katsuhisa; Umezu, Mitsuo; Yamato, Masayuki; Liu, Zhongmin; Okano, Teruo

PLoS ONE10(10)2015年10月-2015年10月 

DOIScopus

詳細

概要:© 2015 Chang et al. Multilayered cell sheets have been produced from bone marrow-derived mesenchymal stem cells (MSCs) for investigating their adhesion properties onto native porcine heart tissue. Once MSCs reached confluence after a 7-day culture on a temperature-responsive culture dish, a MSCs monolayer spontaneously detached itself from the dish, when the culture temperature was reduced from 37 to 20°C. The basal extracellular matrix (ECM) proteins of the single cell sheet are preserved, because this technique requires no proteolytic enzymes for harvesting cell sheet, which become a basic building block for assembling a multilayer cell sheet. The thickness of multilayered cell sheets made from three MSC sheets was found to be approximately 60 μm. For investigating the adhesion properties of the basal and apical sides, the multilayered cell sheets were transplanted onto the surface of the heart's left ventricle. Multilayered cell sheets were histological investigated at 15, 30, 45 and 60 minutes after transplantation by hematoxylin eosin (HE) and azan dyes to determine required time for the adhesion of the multilayered sheets following cell-sheet transplantation. The results showed that only the basal side of multilayered cell sheets significantly enhanced the sheets adhesion onto the surface of heart 30 minutes after transplantation. This study concluded that (1) cell sheets had to be transplanted with its basal side onto the surface of heart tissue and (2) at least 30 minutes were necessary for obtaining the histological adhesion of the sheets to the heart tissue. This study provided clinical evidence and parameters for the successful application of MSC sheets to the myocardium and allowed cell sheet technology to be adapted clinical cell-therapy for myocardial diseases.

Controlling shape and position of vascular formation in engineered tissues by arbitrary assembly of endothelial cells

Takehara, Hiroaki; Takehara, Hiroaki; Sakaguchi, Katsuhisa; Kuroda, Masatoshi; Muraoka, Megumi; Itoga, Kazuyoshi; Okano, Teruo; Shimizu, Tatsuya

Biofabrication7(4)2015年11月-2015年11月 

DOIScopus

詳細

ISSN:17585082

概要:© 2015 IOP Publishing Ltd. Cellular self-assembly based on cell-to-cell communication is a well-known tissue organizing process in living bodies. Hence, integrating cellular self-assembly processes into tissue engineering is a promising approach to fabricate well-organized functional tissues. In this research, we investigated the capability of endothelial cells (ECs) to control shape and position of vascular formation using arbitral-assembling techniques in three-dimensional engineered tissues. To quantify the degree of migration of ECs in endothelial network formation, image correlation analysis was conducted. Positive correlation between the original positions of arbitrarily assembled ECs and the positions of formed endothelial networks indicated the potential for controlling shape and position of vascular formations in engineered tissues. To demonstrate the feasibility of controlling vascular formations, engineered tissues with vascular networks in triangle and circle patterns were made. The technique reported here employs cellular self-assembly for tissue engineering and is expected to provide fundamental beneficial methods to supply various functional tissues for drug screening and regenerative medicine.

H-3-2 PTFE材を用いたマイクロゼラチンファイバーの型成形(マイクロナノ理工学(3),口頭発表)

田中 龍一郎;上原 嘉宏;坂口 勝久;梅津 信二郎

IIP情報・知能・精密機器部門講演会講演論文集2016p."H - 3-2-1"-"H-3-2-2"2016年03月-2016年03月 

CiNii

詳細

概要:Gelatin is useful biomaterials for biofabrication. The property of gelatin is unique. The state is changed to sol or gel by temperature. Utilizing the property of gelatin, we are able to fabricate cave for artificial Vessels in biodevices. Therefore, micro gelatin fibers are useful devices for fabrication of artifical vessles. In this paper, we made a mold for fabrication of micro gelatin fibers. We used PTFE for molds, because it has non-adhesive. Then, we made micro gelatin fibers which were 20〜100 μm in width utilizing the mold. Machining marks of the mold were transcribed on the surface of micro gelatin fibers. We are able to fabricate cave with arbitrary shape for artificial vessels utilizing micro gelatin fibers.

細胞シート技術を用いたヒト立体心筋組織構築のための灌流可能な血管網導入デバイスの開発

坂口 勝久;清水 達也;松浦 勝久;大和 雅之;梅津 光生;岡野 光夫

生体医工学54(27)p.S167 - S1672016年-2016年

CiNii

詳細

概要:

単離された心筋細胞から拍動する立体的な心筋組織への構築は新たな再生医療や薬剤スクリーニングへの応用として注目されている。本研究では、温度に応答して細胞脱着可能な培養皿を用いて細胞をシート状に形成し、その細胞シートを積層化することによって立体心筋組織の構築を試みている。しかしながら、単に細胞シートを重ねるだけでは高密度の細胞群であるために酸素・栄養素の供給や老廃物の除去が困難である。そこで、血管内皮細胞で構成したネットワーク付き細胞シートを内皮細胞含有の微小流路付きゲル上に培養することで、細胞シート内血管ネットワークとゲル内血管ネットワークを形成させ培養液灌流可能な血管網付き立体心筋組織の作製ができないかを検討した。本実験ではヒトiPS由来心筋細胞、繊維芽細胞、内皮細胞を共培養した細胞シートを使用し、微小流路への灌流量は生体内細血管に生じるずり応力から0.3 mL/minに設定し7~14日間培養した。灌流培養した後、培養積層化組織をHE染色およびCD31染色にて観察を行った結果、細胞シートおよびコラーゲンゲルの内皮細胞が浸潤・管腔化してネットワークが発達した。さらに、心筋細胞シートの自律拍動も肉眼で確認された。この結果から、灌流可能な血管網を導入することで細胞からの立体心筋組織創出の可能性を示した。

空洞を有するバイオデバイス作製のためのマイクロゼラチンファイバーの作製

田中 龍一郎;新井 隆史;上原 嘉宏;坂口 勝久;梅津 信二郎

生体医工学54(27)p.S165 - S1652016年-2016年

CiNii

詳細

概要:

Gelatin has unique properties. The form is changed by temperature. In addition, the melting point is around 37 degree C. For these reasons, gelatin is useful for biofabrication. We are able to fabricate biodevices of biomaterials with cave utilizing gelatin. In this study, we spun gelatin fibers utilizing three methods. We were able to fabricate micro gelatin fibers which diameter was 20~200 μm. Each methods have merits and demerits. Therefore, utilizing three methods, we were able to fabricate complex structures of micro gelatin fibers.

Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae

Haraguchi, Yuji; Kagawa, Yuki; Kagawa, Yuki; Kagawa, Yuki; Sakaguchi, Katsuhisa; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

Scientific Reports72017年01月-2017年01月 

DOIScopus

詳細

概要:© 2017 The Author(s).In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

Fabrication of micro-gelatin fiber utilizing coacervation method

Arai, Takafumi; Tanaka, Ryuichiro; Sakaguchi, Katsuhisa; Umezu, Shinjiro

Artificial Life and Roboticsp.1 - 62016年12月-2016年12月 

DOIScopus

詳細

ISSN:14335298

概要:© 2016 ISAROBBiotechnology has drastically been advanced by the development of iPS and ES cells, which are representative forms induced pluripotent stem cells. In the micro/nano bio field, the development of cells and Taylor-made medicine for a potential treatment of incurable diseases has been a center of attention. The melting point of gelatin is between 25 and 33 °C, and the sol–gel transition occurs in low temperature. This makes the deformation of this useful biomaterial easy. The examples of gelatin fiber applications are suture threads, blood vessel prosthesis, cell-growth-based materials, filter materials, and many others. Because the cell size differs depending on the species and applications, it is essential to fabricate gelatin fibers of different diameters. In this paper, we have developed a fabrication method for gelatin fibers the coacervation method. We fabricated narrow gelatin fibers having a diameter over 10 μm.

Optical coherence microscopy of living cells and bioengineered tissue dynamics in high-resolution cross-section

Hasegawa, Akiyuki; Haraguchi, Yuji; Oikaze, Hirotoshi; Kabetani, Yasuhiro; Sakaguchi, Katsuhisa; Sakaguchi, Katsuhisa; Shimizu, Tatsuya

Journal of Biomedical Materials Research - Part B Applied Biomaterials105(3)p.481 - 4882017年04月-2017年04月 

DOIScopus

詳細

ISSN:15524973

概要:© 2015 Wiley Periodicals, Inc.Optical coherence tomography (OCT) is a valuable tool in the cross-sectional observation/analysis of three-dimensional (3-D) biological tissues, and that histological observation is important clinically. However, the resolution of the technology is approximately 10–20 μm. In this study, optical coherence microscopy (OCM), a tomographic system combining OCT technology with a microscopic technique, was constructed for observing cells individually with a resolution at the submicrometer level. Cells and 3-D tissues fabricated by cell sheet technology were observed by OCM. Importantly, the cell nuclei and cytoplasm could be clearly distinguished, and the time-dependent dynamics of cell-sheet tissues could be observed in detail. Additionally, the 3-D migration of cells in the bioengineered tissue was also detected using OCM and metal-labeled cells. Bovine aortic endothelial cells, but not NIH3T3 murine embryonic skin fibroblasts, actively migrated within the 3-D tissues. This study showed that the OCM system would be a valuable tool in the fields of cell biology, tissue engineering, and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 481–488, 2017.

Fundamental characteristics of printed gelatin utilizing micro 3D printer

Tanaka, Ryu ichiro; Sakaguchi, Katsuhisa; Umezu, Shinjiro; Umezu, Shinjiro

Artificial Life and Roboticsp.1 - 52017年01月-2017年01月 

DOIScopus

詳細

ISSN:14335298

概要:© 2017 ISAROBGelatin is useful for biofabrication, because it can be used for cell scaffolds and it has unique properties. Therefore, we attempted to fabricate biodevices of gelatin utilizing micro 3D printer which is able to print with high precision. However, it has been difficult to fabricate 3D structure of gelatin utilizing 3D printer, because a printed gelatin droplet on the metal plate electrode would spread before solidification. To clear this problem, we developed a new experimental set-up with a peltier device that can control temperature of the impact point. At an impact point temperature of 80 °C, the spreading of printed gelatin droplets was prevented. Therefore, we were able to print a ball gelatin. In addition, we were able to print a narrower gelatin line than at an impact point temperature of 20 °C.

Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers

Sakaguchi Katsuhisa;Arai Takafumi;Shimizu Tatsuya;Umezu Shinjiro

Jpn. J. Appl. Phys.56(5)2017年04月-2017年04月 

CiNii

詳細

ISSN:0021-4922

概要:Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.

The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models

Alshareeda, Alaa T.; Alshareeda, Alaa T.; Sakaguchi, Katsuhisa; Sakaguchi, Katsuhisa; Abumaree, Mohammed; Abumaree, Mohammed; Mohd Zin, Nur Khatijah; Mohd Zin, Nur Khatijah; Shimizu, Tatsuya

PLoS ONE12(8)2017年08月-2017年08月 

PubMedDOIScopus

詳細

概要:© 2017 Alshareeda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background: Hepatocellular carcinoma (HCC) is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs) on the development of the HCC model and on different liver parameters such as albumin and urea. Methods: Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs) and human bone marrow mesenchymal stromal cells (BM-MSCs) on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel. Results: HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC. Conclusions: Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2 cell sheets. This provides the foundation for future research using stromal cells in preclinical and clinical investigations.

Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers

Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro

Japanese Journal of Applied Physics56(5)2017年05月-2017年05月 

DOIScopus

詳細

ISSN:00214922

概要:© 2017 The Japan Society of Applied Physics. Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.

特許

整理番号:1995

細胞分散方法および細胞分散装置(日本)

坂口 勝久

特願2018-028999、特開2019-140985

整理番号:2032

人工肝組織及びその製造方法(日本)

坂口 勝久

特願2018-015827、特開2019-129775

整理番号:2057

人工血管ユニットの製造方法及び人工血管ユニット(日本)

梅津 信二郎, 坂口 勝久, 秋元 渓

特願2018-095023、特開2019-198493

外部研究資金

科学研究費採択状況

研究種別:基盤研究(B)

自己治癒能力を引き出す無細胞化組織実用化のための総合的基礎研究

2012年-2014年

研究分野:医用生体工学・生体材料学

配分額:¥5980000

研究種別:

スマートエレクトロニクスシートを搭載した人工心筋細胞組織の開発

2018年-0月-2020年-0月

配分額:¥6240000

研究種別:

クエットフローを用いた回転浮遊培養における細胞増殖への影響

2017年-0月-2019年-0月

配分額:¥2990000

研究種別:

マイクロ3Dプリンタと細胞シート技術による3次元状細胞組織の作製

2016年-0月-2018年-0月

配分額:¥3640000

研究種別:

無細胞化技術と生体組織滅菌技術による自己組織化する前十字靭帯再建デバイスの開発

2014年-0月-2017年-0月

配分額:¥16510000

研究種別:

肝臓等複雑化組織の構築と機能解明

2011年-0月-2016年-0月

配分額:¥121290000

研究種別:

効果的な細胞移植を実現するための細胞シート高速積層法の開発

2019年-0月-2022年-0月

配分額:¥4160000

研究種別:

血栓形成を分岐点とする血管リモデリングを考慮した脳動脈瘤の時間定量的成長予測

2019年-0月-2022年-0月

配分額:¥17550000

現在担当している科目

科目名開講学部・研究科開講年度学期
生命医科学実験I先進理工学部2020春学期
生命医科学実験I [S Grade]先進理工学部2020春学期
修士論文(生命理工)大学院先進理工学研究科2020通年
Research on Regenerative Medical Engineering and its Application大学院先進理工学研究科2020通年
再生医工学応用研究大学院先進理工学研究科2020通年
生命理工学特別実習大学院創造理工学研究科2020集中講義(春学期)
生命理工学特別演習大学院先進理工学研究科2020集中講義(春学期)
臨床医工学概論大学院創造理工学研究科2020春学期
臨床医工学概論大学院先進理工学研究科2020春学期
Practical Medical Engineering大学院先進理工学研究科2020春学期
臨床医工学概論大学院先進理工学研究科2020春学期
Seminar on Regenerative Medical Engineering A大学院先進理工学研究科2020春学期
再生医工学演習A大学院先進理工学研究科2020春学期
Seminar on Regenerative Medical Engineering B大学院先進理工学研究科2020秋学期
再生医工学演習B大学院先進理工学研究科2020秋学期
Seminar on Regenerative Medical Engineering C大学院先進理工学研究科2020春学期
再生医工学演習C大学院先進理工学研究科2020春学期
Seminar on Regenerative Medical Engineering D大学院先進理工学研究科2020秋学期
再生医工学演習D大学院先進理工学研究科2020秋学期
Master's Thesis (Department of Integrative Bioscience and Biomedical Engineering)大学院先進理工学研究科2020通年
再生医工学応用研究大学院先進理工学研究科2020通年