Name

NODA, Suguru

Official Title

Professor

Affiliation

(School of Advanced Science and Engineering)

Contact Information

Mail Address

Mail Address
noda@waseda.jp

Address・Phone Number・Fax Number

Address
Room 203B, Building 65th, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Phone Number
+81-3-5286-2769
Fax Number
+81-3-5286-2769

URL

Web Page URL

http://www.f.waseda.jp/noda/

Grant-in-aids for Scientific Researcher Number
50312997

Sub-affiliation

Sub-affiliation

Faculty of Science and Engineering(Graduate School of Advanced Science and Engineering)

Affiliated Institutes

ナノプロセス研究所

研究所員 2012-2014

ナノプロセス研究所

研究所員 2015-

理工学術院総合研究所(理工学研究所)

兼任研究員 2018-

Educational background・Degree

Educational background

-1994 The University of Tokyo Faculty of Engineering Department of Chemical Engineering
-1996 The University of Tokyo Graduate School of Engineering Department of Chemical System Engineering
-1999 The University of Tokyo Graduate School of Engineering Department of Chemical System Engineering

Degree

Ph.D Coursework The University of Tokyo Reaction engineering/Process system

Career

1999/04-2007/06Assistant Professor, The University of Tokyo
2007/06-2012/08Associate Professor, The University of Tokyo
2012/09-Professor, Waseda University (2009.10-2013.03 Concurrent Researcher, PRESTO, JST)

Academic Society Joined

The Society of Chemical Engineers, Japan

The Japan Society of Applied Physics

Materials Research Society

The Fullerenes, Nanotubes and Graphene Research Society

The Carbon Society of Japan

Award

The SCEJ Award for Outstanding Young Researcher

2006/03Conferment Institution:The Society of Chemical Engineers, Japan

Award Winner(Group):Suguru Noda

Distinguished Lecture in Chemical Engineering, Hiroshima University

2014/04Conferment Institution:Hiroshima University

Award Winner(Group):Suguru Noda

Research Field

Keywords

Materials Processing, Carbon Nanotubes, Graphene, Silicon Thin Films, Chemical Vapor Deposition, Physical Vapor Deposition

Grants-in-Aid for Scientific Research classification

Engineering / Process/Chemical engineering / Reaction engineering/Process system

Interdisciplinary science and engineering / Nano/Micro science / Nanobioscience

Research interests Career

Understanding and Customizing Carbon Nanotube Growth

Individual research allowance

Developing Practical Fabrication Methods of Graphene

Individual research allowance

Rapid Deposition of Various Silicon Films and Their Applications

Individual research allowance

Paper

Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes

H. Sugime*, T. Sato, R. Nakagawa, C. Cepek, and S. Noda

ACS Nano Peer Review Yes 2019/11-2019/11

DOI

Effective heat transfer pathways of thermally conductive networks formed by one-dimensional carbon materials with different sizes

Y. S. Lee, S.-Y. Lee, K. S. Kim, S. Noda, S. E. Shim*, and C.-M. Yang*

Polymers Peer Review Yes 11(10) p.16612019/10-2019/10

DOI

Detail

Publish Classification:Research paper (scientific journal)

Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process

R. Xie, N. Ishijima, H. Sugime, and S. Noda*

Scientific Reports Peer Review Yes 9p.120512019/08-2019/08

DOI

Detail

Publish Classification:Research paper (scientific journal)

Stability of chemically doped nanotube-silicon heterojunction solar cells: Role of oxides at the carbon-silicon interface

D. Tune, H. Shirae, V. Lami, R. Headrick, M. Pasquali, Y. Vaynzof, S. Noda, E. Hobbie*, and B. Flavel*

ACS Applied Energy Materials Peer Review Yes 2(8) p.5925 - 59232019/07-2019/07

DOI

Detail

Publish Classification:Research paper (scientific journal)

A semi-transparent nitride photoanode responsive up to 600 nm based on a carbon nanotube thin film electrode

D. Akagi, Y. Kageshima, Y. Hashizume, S. Aoi, Y. Sasaki, H. Kaneko, T. Higashi, T. Hisatomi, M. Katayama, T. Minegishi, S. Noda, K. Domen*

ChemPhotoChem Peer Review Yes 3p.521 - 5242019/04-2019/04

DOI

Detail

Publish Classification:Research paper (scientific journal)

1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions

Y. Nagai, H. Sugime, and S. Noda*

Chem. Eng. Sci. Peer Review Yes 201p.319 - 3242019/03-

DOI

Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates

S. Akiba, M. Kosaka, K. Ohashi, K. Hasegawa, H. Sugime, S. Noda*

Thin Solid Films Peer Review Yes 675p.136 - 1422019/02-

DOI

Volumetric discharge capacity 1 Ah cm-3 realized by sulfur in carbon nanotube sponge cathode

K. Hori, K. Hasegawa, T. Momma, and S. Noda*

J. Phys. Chem. C Peer Review Yes 123(7) p.3951 - 39582019/01-

DOI

Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis towards mainstream commercial applications

R. Rao,* C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama, J. Carpena-Nunez, W. Shi, D.L. Plata, E.S. Penev, B.I. Yakobson, P.B. Balbuena, C. Bichara, D.N. Futaba, S. Noda, H. Shin, K.S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli , H.-M. Cheng, D.N. Zakharov, E.A. Stach, J. Zhang, F. Wei, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W.W. Adams, and A.J. Hart

ACS Nano Peer Review Yes 12(12) p.111756 - 1117842018/12-

DOI

Resettable heterogeneous catalyst: (re)generation and (re)adsorption of Ni nanoparticles for repeated synthesis of carbon nanotubes on Ni-Al-O thin films

B. Liang, E. Yi, T. Sato, S. Noda, K. Sun, D. Jia, Y. Zhou, R. M. Laine

ACS Applied Nano Materials Peer Review Yes 2018/09-2018/09

DOI

Detail

Publish Classification:Research paper (scientific journal)

An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors

H. Sugime, T. Ushiyama, K. Nishimura, Y. Ohno, S. Noda

Analyst Peer Review Yes 143p.3635 - 36422018/06-2018/06

DOI

Detail

Publish Classification:Research paper (scientific journal)

Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes

S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, S. Noda

Carbon Peer Review Yes 138p.1 - 72018/05-2018/05

DOI

Detail

Publish Classification:Research paper (scientific journal)

Millimeter-tall carbon nanotube arrays grown on aluminum substrates

Miura, Shota; Yoshihara, Yu; Asaka, Mayu; Hasegawa, Kei; Sugime, Hisashi; Ota, Aun; Oshima, Hisayoshi; Noda, Suguru; Noda, Suguru

Carbon 130p.834 - 8422018/04-2018/04

DOIScopus

Detail

ISSN:00086223

Outline:© 2018 Elsevier Ltd Millimeter-tall vertically aligned carbon nanotubes (VA-CNTs) were grown directly on Al substrates. Atmospheric pressure chemical vapor deposition is performed at 600 °C, which is well below the melting point of Al (660 °C), using Fe catalyst and C 2 H 2 as a highly reactive carbon feedstock. The CNT height was sensitive to the C 2 H 2 concentration and 0.06 vol% was optimum for balanced growth rate and catalyst lifetime, yielding 0.06 mm-tall VA-CNTs in 2 h. The CO 2 addition at 1.8 vol% to the C 2 H 2 /Ar gas significantly enhanced the CNT growth, yielding 1.1 mm-tall VA-CNTs in 12 h. CO 2 shows this remarkable effect when added in large excess to C 2 H 2 , differently from the well-known method of “small addition of water.” Moreover, the resulting VA-CNTs showed electrical contact with the Al sheets with resistance of ≤0.7 Ω cm −2 . The effect of CO 2 is systematically studied and discussed.

CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis

T. Sato, H. Sugime, and S. Noda

Carbon Peer Review Yes 136p.143 - 1492018/04-2018/04

DOI

Detail

Publish Classification:Research paper (scientific journal)

Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition

K. Hasegawa, C. Takazawa, M. Fujita, S. Noda, and M. Ihara

CrystEngComm Peer Review Yes 20(13) p.1774 - 17782018/02-2018/02

DOI

Detail

Publish Classification:Research paper (scientific journal)

Carbon nanotube web with carboxylated polythiophene “assist” for high-performance battery electrodes

Y. H. Kwon, J. J. Park, L. M. Housel, K. Minnici, G. Zhang, S. R. Lee, S. W. Lee, Z. Chen, S. Noda, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, and E. Reichmanis

ACS Nano Peer Review Yes 12(4) p.3216 - 31392018/01-

DOI

Self-supporting S@GO-FWCNTs composite films as positive electrodes for high-performance lithium-sulfur batteries

Cui, Lifeng; Xue, Yanan; Noda, Suguru; Chen, Zhongming

RSC Advances 8(5) p.2260 - 22662018/01-2018/01

DOIScopus

Detail

Outline:© 2018 The Royal Society of Chemistry. Although lithium-sulfur (Li-S) batteries are a promising secondary power source, it still faces many technical challenges, such as rapid capacity decay and low sulfur utilization. The loading of sulfur and the weight percentage of sulfur in the cathode usually have a significant influence on the energy density. Herein, we report an easy synthesis of a self-supporting sulfur@graphene oxide-few-wall carbon nanotube (S@GO-FWCNT) composite cathode film, wherein an aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs. The 10 wt% FWCNT matrix through ultrasonication not only provided self-supporting properties without the aid of metallic foil, but also increased the electrical conductivity. The resulting S@GO-FWCNT composite electrode showed high rate performance and cycle stability up to ∼385.7 mA h g electrode -1 after 500 cycles and close to ∼0.04% specific capacity degradation per cycle, which was better than a S@GO composite electrode (353.1 mA h g electrode -1 ). This S@GO-FWCNT composite self-supporting film is a promising cathode material for high energy density rechargeable Li-S batteries.

Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors

Liu, Tianyuan; Lee, Byeongyong; Lee, Michael J.; Park, Jinho; Chen, Zhongming; Noda, Suguru; Lee, Seung Woo

Journal of Materials Chemistry A 6(8) p.3367 - 33752018/01-2018/01

DOIScopus

Detail

ISSN:20507488

Outline:© The Royal Society of Chemistry 2018. Hybrid supercapacitors, which combine the advantages of supercapacitors and rechargeable batteries, have the potential to meet the demands of both high-energy and -power in electrochemical energy storage systems. However, the energy density of the hybrid supercapacitors has been limited because of the low capacity of the activated carbon cathode. Here we introduce a high-capacity carbon cathode containing plenty of oxygen functional groups that are redox-active towards both Li- and Na-ions. This functional carbon has an ultra-thin two-dimensional structure that has significant advantages in utilizing the redox reactions. The functional carbon cathode can exhibit very high capacities of ∼250 mA h g -1 in Li-cells and ∼210 mA h g -1 in Na-cells. A hybrid supercapacitor consisting of the two-dimensional functional carbon cathode with a commercial level loading density of ∼9.3 mg cm -2 and a Si-based anode delivers a high-energy density of ∼182 W h kg -1 at a high-power density of 1 kW kg -1 .

A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes

Kowase, Takayuki; Hori, Keisuke; Hasegawa, Kei; Momma, Toshiyuki; Noda, Suguru; Noda, Suguru

Journal of Power Sources 363p.450 - 4592017/09-2017/09

DOIScopus

Detail

ISSN:03787753

Outline:© 2017 Elsevier B.V. Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%–60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature ≥2000 °C, much higher than the melting point of Si (1414 °C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/g film , 230 mAh/cm 3 , and 0.644 mAh/cm 2 with a moderate Si-based performance of 863 mAh/g Si at the 100th cycle.

Ten-Second Epitaxy of Cu on Repeatedly Used Sapphire for Practical Production of High-Quality Graphene

Nagai, Yukuya; Okawa, Asahi; Minamide, Taisuke; Hasegawa, Kei; Sugime, Hisashi; Noda, Suguru

ACS Omega 2(7) p.3354 - 33622017/07-2017/07

DOIScopus

Detail

Outline:© 2017 American Chemical Society. Epitaxial copper (Cu) films yield graphene with superior quality but at high cost. We report 1-3 μm thick epitaxial Cu films prepared on c plane sapphire substrates in 10-30 s, which is much faster than that of the typical sputtering method. Such rapid deposition is realized by vapor deposition using a Cu source heated to 1700-1800 °C, which is much higher than its melting point of 1085 °C. Continuous graphene films, either bilayer or single-layer, are obtained on the epitaxial Cu by chemical vapor deposition and transferred to carrier substrates. The sapphire substrates can be reused five to six times maintaining the quality of the epitaxial Cu films and graphene. The mechanisms and requirements are discussed for such quick epitaxy of Cu on reused sapphire, which will enable high-quality graphene production at lower cost.

Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale

Shirae, Hiroyuki; Hasegawa, Kei; Sugime, Hisashi; Yi, Eongyu; Laine, Richard M.; Noda, Suguru

Carbon 114p.31 - 382017/04-2017/04

DOIScopus

Detail

ISSN:00086223

Outline:© 2016 Elsevier LtdFlame-synthesized (CoO)x(Al2O3)1-x spinel nanopowders with primary particles of ∼20 nm were used to grow small diameter carbon nanotubes (CNTs). The nanopowders with x ≤ 0.35 grew few CNTs whereas that with x = 0.65 grew CNTs efficiently. Low crystalline and large-diameter multi-wall CNTs grew by annealing and chemical vapor deposition (CVD) at 800 °C for ∼10 min, whereas single-wall CNTs with high crystallinity (G-band to D-band intensity ratio of 20–100 by Raman spectroscopy) grew by annealing and CVD at ≥1000 °C for ∼10 s. The excess Co in the spinel reduced and segregated to form multiple Co nanoparticles on the surface of the single primary alumina nanoparticles in ∼10 s, yielding SWCNTs in ∼10 s. Such flame synthesized nanopowders, reduced and activated by H2, provide CNTs from C2H2, all in ten-second time scale, and as such are promising for practical, high-through-put production of small-diameter CNTs.

Highly air- and moisture-stable hole-doped carbon nanotube films achieved using boron-based oxidant

Funahashi, Kazuma; Tanaka, Naoki; Shoji, Yoshiaki; Imazu, Naoki; Nakayama, Ko; Kanahashi, Kaito; Shirae, Hiroyuki; Noda, Suguru; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi; Takenobu, Taishi; Takenobu, Taishi

Applied Physics Express 10(3) 2017/03-2017/03

DOIScopus

Detail

ISSN:18820778

Outline:© 2017 The Japan Society of Applied Physics.Hole doping into carbon nanotubes can be achieved. However, the doped nanotubes usually suffer from the lack of air and moisture stability, thus, they eventually lose their improved electrical properties. Here, we report that a salt of the two-coordinate boron cation Mes2B+ (Mes: 2,4,6-trimethylphenyl group) can serve as an efficient hole-doping reagent to produce nanotubes with markedly high stability in the presence of air and moisture. Upon doping, the resistances of the nanotubes decreased, and these states were maintained for one month in air. The hole-doped nanotube films showed a minimal increase in resistance even upon humidification with a relative humidity of 90%.

Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries

Liu, Tianyuan; Kim, Ki Chul; Lee, Byeongyong; Chen, Zhongming; Noda, Suguru; Jang, Seung Soon; Lee, Seung Woo

Energy and Environmental Science 10(1) p.205 - 2152017/01-2017/01

DOIScopus

Detail

ISSN:17545692

Outline:© The Royal Society of Chemistry 2017.Self-polymerized dopamine is a versatile coating material that has various oxygen and nitrogen functional groups. Here, we demonstrate the redox-active properties of self-polymerized dopamine on the surface of few-walled carbon nanotubes (FWNTs), which can be used as organic cathode materials for both Li- and Na-ion batteries. We reveal the multiple redox reactions between self-polymerized dopamine and electrolyte ions in the high voltage region from 2.5 to 4.1 V vs. Li using both density functional theory (DFT) calculations and electrochemical measurements. Free-standing and flexible hybrid electrodes are assembled using a vacuum filtration method, which have a 3D porous network structure consisting of polydopamine coated FWNTs. The hybrid electrodes exhibit gravimetric capacities of ∼133 mA h g-1 in Li-cells and ∼109 mA h g-1 in Na-cells utilizing double layer capacitance from FWNTs and multiple redox-reactions from polydopamine. The polydopamine itself within the hybrid film can store high gravimetric capacities of ∼235 mA h g-1 in Li-cells and ∼213 mA h g-1 in Na-cells. In addition, the hybrid electrodes show a high rate-performance and excellent cycling stability, suggesting that self-polymerized dopamine is a promising cathode material for organic rechargeable batteries.

Nano-scale smoothing of double layer porous Si substrates for detaching and fabricating low cost, high efficiency monocrystalline thin film Si solar cell by zone heating recrystallization

C. Takazawa, M. Fujita, K. Hasegawa, A. Lukianov, X. Zhang, S. Noda, and M. Ihara

ECS Trans. Peer Review Yes 75(31) p.11 - 232017/01-2017/01

DOI

Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotube for rapid electrochemical energy storage

B. Lee, C. Lee, T. Liu, K. Eom, Z. Chen, S. Noda, T. F. Fuller, H. D. Jang, and S. W. Lee

Nanoscale 2016/05-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Outline:Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotube (f-FWNT) are assembled via vacuum-filtration process, showing a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacity up to ~170 mAh/g with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNT. These results highlight the importance of microstructure design coupled with oxygen chemistry control, for maximizing the surface redox reactions on the functionalized graphene based electrodes.

Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils

Hasegawa, Kei; Noda, Suguru

Journal of Power Sources 321p.155 - 1622016/04-

DOIScopus

Detail

ISSN:03787753

Outline:© 2016 Elsevier B.V. All rights reserved. Herein, we propose lithium ion batteries (LIBs) without binder or metal foils, based on a three-dimensional carbon nanotube (CNT) current collector. Because metal foils occupy 20-30 wt% of conventional LIBs and the polymer binder has no electrical conductivity, replacing such non-capacitive materials is a valid approach for improving the energy and power density of LIBs. Adding only 1 wt% of few-wall CNTs to the active material enables flexible freestanding sheets to be fabricated by simple dispersion and filtration processes. Coin cell tests are conducted on full cells fabricated from a 99 wt% LiCoO2-1 wt% CNT cathode and 99 wt% graphite-1 wt% CNT anode. Discharge capacities of 353 and 306 mAh ggraphite -1 are obtained at charge-discharge rates of 37.2 and 372 mA ggraphite -1, respectively, with a capacity retention of 65% at the 500th cycle. The suitability of the 1 wt% CNT-based composite electrodes for practical scale devices is demonstrated with laminate cells containing 50 × 50 mm2 electrodes. Use of metal combs instead of metal foils enables charge-discharge operation of the laminate cell without considerable IR drop. Such electrodes will minimize the amount of metal and maximize the amount of active materials contained in LIBs.

Rapid vapour deposition and in situ melt crystallization for 1-min fabrication of 10-μm-thick crystalline silicon films with a lateral grain size of over 100 μm

Y. Yamasaki, K. Hasegawa, T. Osawa, and S. Noda

CrystEngComm 18(19) p.3404 - 34102016/04-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Outline:We developed a film deposition method which yielded continuous polycrystalline Si films with large lateral grain sizes of over 100 μm and thicknesses of ∼10 μm in 1 min on growth substrates other than silicon wafers in a single-step process. The silicon source is heated to ∼2000 °C, much higher than the melting point of Si, which enables a high deposition rate. Controlling the temperature of the growth substrate, initially above and later below the melting point of Si, allows the seamless lateral to vertical growth of crystalline silicon grains. Thermally and chemically stable substrates of quartz glass and alumina with a 0.1 μm-thick amorphous carbon layer were effective; liquid silicon wetted well by forming a thin SiC interlayer while substrates stayed stable. Such large-grain polycrystalline silicon films synthesized rapidly in 1 min may be used for low-cost, stable and flexible thin film photovoltaic cells.

50-100-μm-thick pseudocapacitive electrodes of MnO2 nanoparticles uniformly electrodeposited in carbon nanotube papers

M. Narubayashi, Z. Chen, K. Hasegawa, and S. Noda

RSC Advances 6(47) p.41496 - 415052016/04-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Outline:To overcome the tradeoff between the gravimetric capacitance and loading density of pseudocapacitive MnO2, we electrodeposited MnO2 nanoparticles on the carbon nanotube (CNT) surfaces in 18–37 μm-thick self-supporting CNT papers. We examined the electrodeposition conditions including constant potential, constant current, and potential pulses, and obtained MnO2–CNT hybrid electrodes containing MnO2 nanoparticles uniformly deposited at 60–90 wt% with an expanded CNT matrix. The MnO2–CNT hybrid electrode with a thickness of 62 μm, density of 1.09 g cm−3, areal mass of 6.75 mg cm−2, and 82 wt% MnO2 load showed a total gravimetric capacitance of 120 and 51 Ftotal gelectrode−1, volumetric capacitance of 131 and 56 Ftotal cm−3 and areal capacitance of 0.81 and 0.34 Ftotal cm−2 at scan rates of 2 and 200 mV s−1, respectively. The large thickness, moderately high mass density, and fairly conductive CNT matrix realized such high values of gravimetric, areal and volumetric capacitances that are important for practical devices.

Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

Nanoscale 8(6) p.3671 - 36772016/02-2016/02

DOIScopus

Detail

ISSN:20403364

Outline:© 2016 The Royal Society of Chemistry. Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ∼210 mA h gCS -1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ∼155 mA h gelectrode -1 with no obvious capacity fading up to 10000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.

Carbon nanotube-silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films

Muramoto, Eri; Yamasaki, Yuhei; Wang, Feijiu; Hasegawa, Kei; Matsuda, Kazunari; Noda, Suguru

RSC Advances 6(96) p.93575 - 935812016/01-2016/01

DOIScopus

Detail

Outline:© The Royal Society of Chemistry 2016.Carbon nanotube (CNT)-silicon (Si) heterojunction solar cells are fabricated with surface-textured Si substrates. Using a dilute alkaline solution, common etchant in the Si solar cell industry, we formed a pyramidal texture on the Si substrate surface. The texture effectively enhances the absorption of the incident light, improving the short-circuit current density by ∼1.3-fold, up to 33.1 mA cm-2. We fabricated CNT-Si solar cells with a power conversion efficiency (PCE) of 10.4% without any anti-reflective coatings or doping of the CNTs. Moreover, the CNT films were prepared from commercialized CNT agglomerates by a mild solution-based process, which is well suited for the fabrication of CNT-Si solar cells with large area. We also achieved a PCE of 9.57% for a flat cell with careful removal of surfactant from and doping by nitric acid of the CNT films. These findings suggest that with the combination of surface-textured Si and solution-processed CNT films, efficient and low-cost CNT-Si solar cells may be realized.

A color-tunable polychromatic organic-light-emitting-diode device with low resistive intermediate electrode for roll-to-roll manufacturing

Tsujimura, Takatoshi; Hakii, Takeshi; Noda, Suguru

IEEE Transactions on Electron Devices 63(1) p.402 - 4072016/01-2016/01

DOIScopus

Detail

ISSN:00189383

Outline:© 2015 IEEE. A flexible organic-light-emitting diode (OLED) with capability to show 16 million colors is fabricated on plastic barrier-film substrate, which can produce arbitrary shape with arbitrary colors, suitable for artistic expressions. Independently controlled red, green, and blue light-emitting layers are stacked vertically, so that no visible structure can be observed even with magnifiers from right-in-front measurement. In the past, large voltage drop of intermediate electrode was preventing this approach to be applied to actual electronic devices. However, according to the surface mobility control using Fick's law analysis, low sheet resistance 7.34 ω/on plastic film is developed, so that 7.17-cm2 area emission is successfully achieved. With optical length optimization for each color stack, more than 100% color reproduction in National Television Committee Standard is achieved by stack design. The device can be used for colored illumination, as well as for organic-light-emitting display pixels for three times emission than the conventional pixel design. The device is fabricated on plastic substrate, so that the polychromatic OLED device is manufacturable with roll-to-roll production line.

Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials

Jpn. J. Appl. Phys. 54(9) 2015/08-2015/08

CiNii

Detail

ISSN:0021-4922

Outline:To achieve denser and taller carbon nanotube (CNT) arrays on Cu foils, catalyst and chemical vapor deposition (CVD) conditions were carefully engineered. CNTs were grown to ∼50 µm using Fe/TiN/Ta catalysts in which Ta and TiN acted as diffusion barriers for Cu and Ta, respectively. A tradeoff was found between the mass density and height of the CNT arrays, and CNT arrays with a mass density of 0.30 g cm−3and height of 45 µm were achieved under optimized conditions. Thermal interface materials (TIMs) with CNT array/Cu foil/CNT array structures showed decreasing thermal resistance from 86 to 24 mm2K W−1with increasing CNT array mass densities from 0.07–0.08 to 0.19–0.26 g cm−3for Cu and Al blocks with surfaces as rough as 20–30 µm. The best CNT/Cu/CNT TIMs showed thermal resistance values comparable to that of a typical indium sheet TIM.

Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

J. C. Bachman, R. Kavian, D. J. Graham, D.Y. Kim, S. Noda, D. G. Nocera*, Y. Shao-Horn*, and S.W. Lee*

Nature Commun. 6p.70402015-

DOI

Overcoming the quality-quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion-extraction process

H. Shirae, D.Y. Kim, K. Hasegawa, T. Takenobu, Y. Ohno, and S. Noda*

Carbon 91p.20 - 292015-

DOI

One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries

J. Lee, K. Hasegawa, T. Momma, T. Osaka, S. Noda*

J. Power Sources 286p.540 - 5502015-

DOI

Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives

R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*

RSC Adv. 5(21) p.16101 - 161112015-

DOI

One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries

J. Lee and S. Noda*

RSC Adv. 5(4) p.2938 - 29462015-

DOI

Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation" method

M. Kosaka, S. Takano, K. Hasegawa, and S. Noda*

Carbon 82p.254 - 2632015-

DOI

Simple and engineered process yielding carbon nanotube arrays with 1.2×1013 cm-2 wall density on conductive underlayer at 400 °C

N. Na, D.Y.Kim, Y.-G. So, Y. Ikuhara, and S. Noda*

Carbon 81p.773 - 7812015-

DOI

Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds

Z. Chen, D.Y. Kim, K. Hasegawa, T. Osawa, and S. Noda*

Carbon 80p.339 - 3502014-

DOI

One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications

N. Fukaya, D.Y. Kim, S. Kishimoto, S. Noda, and Y. Ohno*

ACS Nano 8(4) p.3285 - 32932014-

DOI

Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes

R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*

RSC Adv. 4(16) p.8230 - 82372014-

DOI

Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter

Z. Chen, D.Y. Kim, K. Hasegawa, and S. Noda*

ACS Nano 7(8) p.6719 - 67282013-

DOI

Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol

H. Sugime and S. Noda*

Carbon 50(8) p.2953 - 29602012-

DOI

One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating

K. Sekiguchi, K. Furuichi, Y. Shiratori, and S. Noda*

Carbon 50(6) p.2110 - 21182012-

DOI

Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries

S.W. Lee, B. M. Gallant, Y. Lee, N. Yoshida, D.Y. Kim, Y. Yamada, S. Noda, A. Yamada, and Y. Shao-Horn*

Energy Environ. Sci. 5(1) p.5437 - 54442012-

DOI

Composite of TiN nanoparticles and few-walled carbon nanotubes and its application for electrocatalytic oxygen reduction reaction

S. Isogai, R. Ohnishi, M. Katayama, J. Kubota, D.Y. Kim, S. Noda, D. Cha, K. Takanabe, and K. Domen*

Chem. Asian J. 7(2) p.286 - 2892012-

DOI

Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays

D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*

Carbon 50(4) p.1538 - 15452012-

DOI

Zeolite surface as a catalyst support material for synthesis of single-walled carbon nanotubes

T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo*

J. Phys. Chem. C 115(49) p.24231 - 242372011-

DOI

Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness

Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*

Jpn. J. Appl. Phys. 50(9) p.0951012011-

DOI

Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests

K. Hasegawa and S. Noda*

Carbon 49(13) p.4497 - 45042011-

DOI

A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects

T. Yamamoto, S. Noda, and M. Kato*

Carbon 49(10) p.3179 - 31832011-

DOI

Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers

Y. Tsuji*, S. Nakamura, and S. Noda

J. Vac. Sci. Technol. B 29(3) p.0318012011-

DOI

Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor

D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*

Carbon 49(6) p.1972 - 19792011-

DOI

Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water

K. Hasegawa and S. Noda*

ACS Nano 5(2) p.975 - 9842011-

DOI

Real-time monitoring of millimeter-tall vertically aligned single-walled carbon nanotube growth on combinatorial catalyst library

K. Hasegawa and S. Noda*

Jpn. J. Appl. Phys. 49(8) p.0851042010-

DOI

Combinatorial evaluation for field emission properties of carbon nanotubes part II - high growth rate system

Y. Shiratori* and S. Noda

J. Phys. Chem. C 114(30) p.12938 - 129472010-

DOI

Two routes to polycrystalline CoSi2 thin films by co-sputtering Co and Si

Yukie Tsuji, Yoshiko Tsuji*, S. Nakamura, and S. Noda

Appl. Surf. Sci. 256(23) p.7118 - 71242010-

DOI

Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth

K. Hasegawa and S. Noda*

Appl. Phys. Express 3(4) p.0451032010-

DOI

Millimeter-tall single-walled carbon nanotube forests grown from ethanol

H. Sugime and S. Noda*

Carbon 48(8) p.2203 - 22112010-

DOI

A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates

S. Noda*, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori

Jpn. J. Appl. Phys. 49(2) p.02BA022010-

DOI

Efficient field emission from triode-type 1D arrays of carbon nanotubes

Y. Shiratori*, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*

Nanotechnology 20(47) p.4757072009-

DOI

Two-dimensional combinatorial investigation of Raman and fluorescence enhancement in silver and gold sandwich substrates

T.W.H. Oates*, Y. Shiratori, and S. Noda

J. Phys. Chem. C 113(22) p.9588 - 95942009-

DOI

Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films

T.W.H. Oates*, H. Sugime, and S. Noda

J. Phys. Chem. C 113(12) p.4820 - 48282009-

DOI

Thickness-gradient dependent Raman enhancement in silver island films

T.W.H. Oates* and S. Noda

Appl. Phys. Lett. 94(5) p.0531062009-

DOI

Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests

H. Sugime, S. Noda*, S. Maruyama, and Y. Yamaguchi

Carbon 47(1) p.234 - 2412009-

DOI

Chemical engineering for technology innovation

Y. Yamaguchi*, S. Noda, and H. Komiyama

Chem. Eng. Commun. 196(1) p.267 - 2762009-

DOI

Combinatorial evaluation for field emission properties of carbon nanotubes

Y. Shiratori, H. Sugime, and S. Noda*

J. Phys. Chem. C 112(46) p.17974 - 179822008-

DOI

Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests

K. Hasegawa, S. Noda*, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi

J. Nanosci. Nanotechnol. 8(11) p.6123 - 61282008-

DOI

Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses

K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi

Appl. Surf. Sci. 254(21) p.6710 - 67142008-

DOI

Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates

T.W.H. Oates*, A. Keller, S. Noda, and S. Facsko

Appl. Phys. Lett. 93(6) p.0631062008-

DOI

Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies

Y. Shiratori, K. Furuichi, S. Noda*, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi

Jpn. J. Appl. Phys. 47(6) p.4780 - 47872008-

DOI

Growth valley dividing single- and multi-walled carbon nanotubes: combinatorial study of nominal thickness of Co catalyst

K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi

Jpn. J. Appl. Phys. 47(4) p.1961 - 19652008-

DOI

Growth mechanism of epitaxial CoSi2 on Si and reactive deposition epitaxy of double heteroepitaxial Si/CoSi2/Si

Y. Tsuji, M. Mizukami, and S. Noda*

Thin Solid Films 516(12) p.3989 - 39952008-

DOI

Structure and magnetic property of c-axis oriented L10-FePt nanoparticles on TiN/a-Si underlayers

Y. Tsuji*, S. Noda, and Y. Yamaguchi

J. Vac. Sci. Technol. B 25(6) p.1892 - 18952007-

DOI

Spontaneous formation of Si nanocones vertically aligned to Si wafers

Y. Tsuji*, S. Nakamura, and S. Noda

J. Vac. Sci. Technol. B 25(3) p.808 - 8122007-

DOI

Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support

S. Noda*, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi

Jpn. J. Appl. Phys. 46(17) p.L399 - L4012007-

DOI

Filling the gap between researchers studying different materials and different methods: a proposal of structured keywords

Y. Kajikawa*, K. Abe, and S. Noda

J. Inf. Sci. 32(6) p.511 - 5242006-

DOI

Supported Ni catalysts from nominal monolayer grow single-walled carbon nanotubes

K. Kakehi, S. Noda*, S. Chiashi, and S. Maruyama

Chem. Phys. Lett. 428(4-6) p.381 - 3852006-

DOI

A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes

S. Noda*, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama

Carbon 44(8) p.1414 - 14192006-

DOI

Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer

S. Inasawa*, M. Sugiyama, S. Noda, and Y. Yamaguchi

J. Phys. Chem. B 110(7) p.3114 - 31192006-

DOI

c-Axis oriented face-centered-tetragonal-FePt nanoparticle monolayer formed on a polycrystalline TiN seed layer

S. Noda*, Y. Tsuji, A. Sugiyama, A. Kikitsu, F. Okada, and H. Komiyama

Jpn. J. Appl. Phys. 44(11) p.7957 - 79612005-

DOI

Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes

S. Noda*, Y. Tsuji, Y. Murakami, and S. Maruyama

Appl. Phys. Lett. 86(17) p.1731062005-

DOI

Growth mode during initial stage of chemical vapor deposition

Y. Kajikawa* and S. Noda

Appl. Surf. Sci. 245(1-4) p.281 - 2892005-

DOI

Structuring knowledge on nanomaterials processing

H. Komiyama*, Y. Yamaguchi, and S. Noda

Chem. Eng. Sci. 59(22-23) p.5085 - 50902004-

DOI

Stranski-Krastanov growth of tungsten during chemical vapor deposition revealed by micro-Auger electron spectroscopy

S. Noda*, T. Tsumura, J. Fukuhara, T. Yoda, H. Komiyama, and Y. Shimogaki

Jpn. J. Appl. Phys. 43(10) p.6974 - 69772004-

DOI

Selective silicidation of Co using silane or disilane for anti-oxidation barrier layer in Cu metallization

S. Noda*, R. Hirai, H. Komiyama, and Y. Shimogaki

Jpn. J. Appl. Phys. 43(9A) p.6001 - 60072004-

DOI

A simple index to restrain abnormal protrusions in films fabricated using CVD under diffusion-limited conditions

Y. Kajikawa*, S. Noda, and H. Komiyama

Chem. Vap. Deposition 10(4) p.221 - 2282004-

DOI

Use of process indices for simplification of the description of vapor deposition systems

Y. Kajikawa*, S. Noda, and H. Komiyama

Mater. Sci. Eng. B 111(2-3) p.156 - 1632004-

DOI

Nucleation of W during chemical vapor deposition from WF6 and SiH4

Y. Kajikawa*, T. Tsumura, S. Noda, H. Komiyama, and Y. Shimogaki

Jpn. J. Appl. Phys. 43(6B) p.3945 - 39502004-

DOI

Incubation time during the CVD of Si onto SiO2 from silane

Y. Kajikawa*, T. Tsuchiya, S. Noda, and H. Komiyama

Chem. Vap. Deposition 10(3) p.128 - 1332004-

DOI

Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr underlayer

M. Hu, S. Noda*, T. Okubo, and H. Komiyama

Appl. Phys. A 79(3) p.625 - 6282004-

DOI

Reaction of Si with HCl to form chlorosilanes: Time dependent nature and reaction model

S. Noda*, K. Tanabe, T. Yahiro, T. Osawa, and H. Komiyama

J. Electrochem. Soc. 151(6) p.C399 - C4042004-

DOI

Combinatorial masked deposition: Simple method to control deposition flux and its spatial distribution

S. Noda*, Y. Kajikawa, and H. Komiyama

Appl. Surf. Sci. 225(1-4) p.372 - 3792004-

DOI

Preferred orientation and film structure of TaN films deposited by reactive magnetron sputtering

S. Noda*, K. Tepsanongsuk, Y. Tsuji, Y. Kajikawa, Y. Ogawa, and H. Komiyama

J. Vac. Sci. Technol. A 22(2) p.332 - 3382004-

DOI

Effects of substrate heating and biasing on manostrcutural evolution of nonepitaxially growth TiN nanofilms

T. Q. Li*, S. Noda*, F. Okada, and H. Komiyama

J. Vac. Sci. Technol. B 21(6) p.2512 - 25162003-

DOI

Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides

Y. Kajikawa*, S. Noda, and H. Komiyama

J. Vac. Sci. Technol. A 21(6) p.1943 - 19542003-

DOI

Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation

T. Q. Li*, S. Noda*, H. Komiyama; T. Yamamoto, and Y. Ikuhara

J. Vac. Sci. Technol. A 21(5) p.1717 - 17232003-

DOI

Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer

M. Hu*, S. Noda*, T. Okubo, Y. Yamaguchi, and H. Komiyama

J. Appl. Phys. 94(5) p.3492 - 34972003-

DOI

Amorphous-to-crystalline transition during the early stages of thin film growth of Cr on SiO2

M. Hu*, S. Noda*, and H. Komiyama

J. Appl. Phys. 93(11) p.9336 - 93442003-

DOI

Mechanisms controlling preferred orientation of chemical vapor deposited polycrystalline films

Y. Kajikawa*, S. Noda, and H. Komiyama

Solid St. Phenomena 93p.411 - 4162003-

A new insight into the growth mode of metals on TiO2(110)

M. Hu*, S. Noda, and H. Komiyama

Surf. Sci. 513(3) p.530 - 5382002-

DOI

Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films

Y. Kajikawa*, S. Noda, and H. Komiyama

Chem. Vap. Deposition 8(3) p.99 - 1042002-

DOI

Cone structure formation by preferred growth of random nuclei in chemical vapor deposited epitaxial silicon films

S. Noda*, Y. Kajikawa, and H. Komiyama

Chem. Vap. Deposition 8(3) p.87 - 892002-

DOI

Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates

M. Hu*, S. Noda, Y. Tsuji, T. Okubo, Y. Yamaguchi, and H. Komiyama

J. Vac. Sci. Technol. A 20(3) p.589 - 5962002-

DOI

Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111)

T. Q. Li*, S. Noda, Y. Tsuji, T. Osawa, and H. Komiyama

J. Vac. Sci. Technol. A 20(3) p.583 - 5882002-

DOI

Growth of trumpet-like protrusions during the CVD of silicon carbide films

Y. Kajikawa*, H. Ono, S. Noda, and H. Komiyama

Chem. Vap. Deposition 8(2) p.52 - 552002-

DOI

Internal microstructure and formation mechanism of surface protrusions in Pb-Ti-Nb-O thin film prepared by MOCVD

X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama

Chem. Vap. Deposition 7(6) p.253 - 2592001-

DOI

Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide

M. Hu*, S. Noda, T. Okubo, Y. Yamaguchi, and H. Komiyama

Appl. Surf. Sci. 181(3-4) p.307 - 3162001-

DOI

NO reduction under the excess O2 condition by porous VYCOR catalyst

M. Yamamoto*, S. Ona, S. Noda, and M. Sadakata

J. Chem. Eng. Jpn. 34(6) p.834 - 8392001-

Influence of deposition temperature on the microstructure of Pb-Ti-Nb-O thin films by metallorganic chemical vapor deposition

X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama

J. Electrochem. Soc. 148(3) p.C227 - C2302001-

DOI

Gas-phase hydroxyl radical emission in the thermal decomposition of lithium hydroxide

S. Noda*, M. Nishioka, and M. Sadakata

J. Phys. Chem. B 103(11) p.1954 - 19591999-

DOI

Gas-phase hydroxyl radical generation by the surface reactions over basic metal oxides

S. Noda*, M. Nishioka, A. Harano, and M. Sadakata

J. Phys. Chem. B 102(17) p.3185 - 31911998-

DOI

Patent

Reference Number:1402

グラフェンの製造方法(日本)

野田 優, 増田 竜也

2013- 47141、2014-172788

Reference Number:1499

カーボンナノチューブの製造装置と製造方法(日本)

野田 優, 大沢 利男, 中村 典義

2014- 27400、2015-151316

Reference Number:1684

自立した銅薄膜の製造方法(日本)

野田 優, 青井 慈喜

2015-056753、2016-176104

Reference Number:1870

二次電池(日本, PCT, アメリカ, 中華人民共和国)

野田 優

2017- 1386、2018-113108

Reference Number:1885

カーボンナノチューブ製造用の触媒前駆組成物とその製造方法、および、触媒前駆組成物を用いたカーボンナノチューブの製造方法と製造装置(日本)

野田 優, 岡田 翔平

2017-022762、2018-126705

Reference Number:1898

触媒担持体及びその調製方法(日本)

野田 優, 吉田 昌広, 大沢 利男

2017- 28207、2018-130704

Reference Number:1961

立体型櫛型電極およびその製造方法(日本)

杉目 恒志, 野田 優

2017-166904、2019- 45244

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:Scientific Research (S)

Creating Soft-Batteries by Simple and Rapid Processes and Innovating Capacity by Reversible Structure Change

2016/05-2021/03

Research Field:Reaction Engineering and Process Systems

Allocation Class:¥185770000

Research Classification:

Creation and simple fabrication of crystalline silicon film-carbon nanotube flexible solar cells

2015/-0-2017/-0

Allocation Class:¥3900000

Research Classification:

Development of novel large-area synthetic methods of graphene-related atomic layers

2013/-0-2018/-0

Allocation Class:¥268320000

Research Classification:

Challenge for flame synthesis of single-wall carbon nanotubes

2013/-0-2015/-0

Allocation Class:¥4030000

Research Classification:

Self-organized growth of structured single-wall carbon nanotubes

Allocation Class:¥27170000

Research Classification:

Chirality-Controlled Growth and Separation of Single-Walled Carbon Nanotubes

Allocation Class:¥89500000

Research Classification:

Systematic investigation and systematization of catalytic growth of single-walled carbon nanotubes aided by a combinatorial method

Allocation Class:¥30160000

Research Classification:

Low cost production of crystalline silicon thin films for solar cells by CVD process with closed gas recycling.

Allocation Class:¥48230000

Research Classification:

Mechanistic study on metal chalcogenides catalyzed water splitting for efficient hydrogen production

2018/-1-2021/-0

Allocation Class:¥2200000

Research Classification:

Creating Soft-Batteries by Simple and Rapid Processes and Innovating Capacity by Reversible Structure Change

2016/-0-2021/-0

Allocation Class:¥185770000

Research Classification:

Mechanistic study on metal chalcogenides catalyzed water splitting for efficient hydrogen production

2019/-0-2021/-0

Allocation Class:¥2300000

On-campus Research System

Special Research Project

3次元ナノ界面の大規模創製と、蓄電デバイス電極への展開

2013

Research Results Outline:①シリコン系合金多孔質厚膜の急速蒸着およびポーラス電極の蓄電応用検討・シリコン多孔質厚膜の急速蒸着と微細構造制御:我々はシリコン蒸着源を2000℃以上①シリコン系合金多孔質厚膜の急速蒸着およびポーラス電極の蓄電応用検討・シリコン多孔質厚膜の急速蒸着と微細構造制御:我々はシリコン蒸着源を2000℃以上と高温にすることで、従来より数桁高い10 µm/min前後の蒸着速度を実現している。本...①シリコン系合金多孔質厚膜の急速蒸着およびポーラス電極の蓄電応用検討・シリコン多孔質厚膜の急速蒸着と微細構造制御:我々はシリコン蒸着源を2000℃以上と高温にすることで、従来より数桁高い10 µm/min前後の蒸着速度を実現している。本研究では、充放電サイクル後に理想的な定常構造を得るべく初期構造を作り込んだ。即ち、基板温度400℃以下にて非晶質膜を得、柱状構造の太さ、空隙、膜密度を制御した。更に、熱アニールにより非晶質シリコンの結晶化を防ぎつつ、シリコンと銅の相互拡散層を形成して密着性を向上した。・単一蒸着源による合金多孔質厚膜の急速蒸着:シリコンは理論容量が非常に高く、他金属と複合化しても十分な容量を保てる。銅と共蒸着して銅集電極を3次元化し、劣化抑制と導電性向上を試みた。銅はシリコンと蒸気圧が近いため、単一のルツボにともに仕込んで共蒸着し、走査型電子顕微鏡(SEM)-エネルギー分散型X線分光法(EDS)により組成傾斜構造を確認した。・充放電特性評価:充放電評価装置を導入し、上記のサンプルの充放電特性を評価し、サイクル特性の向上を確認した。②長尺CNTの連続合成、良導性CNTスポンジの開発、およびソフト電極の蓄電応用検討・流動層法での長尺CNTの層数制御:我々は独自のCVD触媒担持法を用い、平均3層と細く400 µm程度と長尺な数層CNTの流動層合成を実現、バインダーレスで良導性の自己組織化ネットワークの自立膜を実現している。CNTの層数が少ないほど自立膜の導電性が向上するが、一方で、二層以上では内層で導電、外層に官能基導入と、機能分担ができるため、CVD担持法に加え液相含浸担持法により触媒の構造制御とCNTの層数制御を進めた。・CNTスポンジの作製基礎技術の開発:CNTを溶液に分散しろ過すると、ネットワーク状膜やスポンジ構造を実現できる。キャパシタ・電池電極利用では種々の活物質と複合化するが、CNTと活物質を同時にろ過するか、CNT膜を形成してから複合化するか、大きく二つのルートがある。目的に応じて分散・膜形成手法を選択できるよう、基礎技術を培った。・長尺CNTと活性炭の複合化による電気化学キャパシタ電極の開発:活性炭は高い比表面積を有しキャパシタの活物質に有効だが、導電性に乏しいため通常は導電助剤とバインダーを用いて金属集電体に塗布し電極化する。一方で我々の数層CNTはバインダーフリーで自立膜を形成でき、導電性が高く、集電極としても機能し得る。バインダーフリーでCNTと活性炭の複合体を作製、キャパシタ電極特性の評価を進め、開発した活性炭-CNT複合電極が実際に金属集電体フリーの軽量・高容量電極として動作することを確認した。・長尺CNTと二酸化マンガンの複合化による電気化学キャパシタ電極の開発:酸化マンガンは、酸化還元反応により高い容量を有すが、導電性に乏しいことが課題である。そこで、我々の数層CNTの分散・ろ過で作製したCNTスポンジを電極とし、二酸化マンガンをCNTスポンジ中に電析し、複合電極を作製した。電気化学評価を行い、低レートでは活性炭-CNT複合電極と同様の高容量が100 μm程度と十分に厚い電極で得られることを確認した。

革新的太陽電池の開発と評価の両輪の実践と、萌芽技術の社会実装学の開拓

2018Collaborator:TEAH, Heng Ti, 大沢 利男, 杉目 恒志, 石嶋 直也, 須藤 南美

Research Results Outline:本課題では、薄膜型の軽量性・柔軟性・設置容易性と、結晶Si型の高効率・長寿命を兼ね備えた、結晶Si膜太陽電池の簡易・高速製造技術の、開発と評価の両輪を本課題では、薄膜型の軽量性・柔軟性・設置容易性と、結晶Si型の高効率・長寿命を兼ね備えた、結晶Si膜太陽電池の簡易・高速製造技術の、開発と評価の両輪を進めた。これまでCNT-Siヘテロ接合で発電効率10.4%だったところ、Si表面のパッシベーション...本課題では、薄膜型の軽量性・柔軟性・設置容易性と、結晶Si型の高効率・長寿命を兼ね備えた、結晶Si膜太陽電池の簡易・高速製造技術の、開発と評価の両輪を進めた。これまでCNT-Siヘテロ接合で発電効率10.4%だったところ、Si表面のパッシベーションとPEDOT:PSS塗布・ヘテロ接合形成で12.9%まで向上した。また、PEDOT:PSS-Siセル表面へのAgの1分蒸着による櫛形電極形成で、セルサイズを0.03 cm2から4 cm2へと100倍超に拡大しつつ発電効率7.5%を得た。加えて、独自の融液蒸着-その場結晶化による結晶Si膜製造とヘテロ接合の塗布形成の全体プロセスのLCA評価に着手した。

Lecture Course

Course TitleSchoolYearTerm
Introduction to Applied ChemistrySchool of Advanced Science and Engineering2019spring semester
Introduction to Applied Chemistry [S Grade]School of Advanced Science and Engineering2019spring semester
Mathematics for Chemistry BSchool of Advanced Science and Engineering2019fall semester
Mathematics for Chemistry B [S Grade]School of Advanced Science and Engineering2019fall semester
Basic Chemical Engineering LaboratorySchool of Advanced Science and Engineering2019spring semester
Basic Chemical Engineering Laboratory [S Grade]School of Advanced Science and Engineering2019spring semester
Applied Chemistry: GeneralSchool of Advanced Science and Engineering2019spring semester
Applied Chemistry: General [S Grade]School of Advanced Science and Engineering2019spring semester
Applied Chemistry:Course ExercisesSchool of Advanced Science and Engineering2019fall semester
Applied Chemistry:Course Exercises [S Grade]School of Advanced Science and Engineering2019fall semester
Chemical Engineering Laboratory ISchool of Advanced Science and Engineering2019fall semester
Chemical Engineering Laboratory I [S Grade]School of Advanced Science and Engineering2019fall semester
Diploma Work (Graduation Thesis)School of Advanced Science and Engineering2019full year
Diploma Work (Graduation Thesis) [S Grade]School of Advanced Science and Engineering2019full year
Chemical Engineering Laboratory IISchool of Advanced Science and Engineering2019spring semester
Chemical Engineering Laboratory II [S Grade]School of Advanced Science and Engineering2019spring semester
Material Process EngineeringSchool of Advanced Science and Engineering2019spring semester
Advanced Chemical Engineering ASchool of Advanced Science and Engineering2019spring semester
Field work in Research Institutions and IndustrySchool of Advanced Science and Engineering2019an intensive course(fall)
Fundamentals of Materials ChemistrySchool of Advanced Science and Engineering2019fall semester
Graduation Thesis ASchool of Advanced Science and Engineering2019fall semester
Graduation Thesis BSchool of Advanced Science and Engineering2019spring semester
Fundamentals of Chemical EngineeringSchool of Advanced Science and Engineering2019fall semester
Fundamentals of Chemical EngineeringSchool of Advanced Science and Engineering2019fall semester
Master's Thesis (Department of Applied Chemistry)Graduate School of Advanced Science and Engineering2019full year
Research on Chemical EngineeringGraduate School of Advanced Science and Engineering2019full year
Research on Chemical EngineeringGraduate School of Advanced Science and Engineering2019full year
Advanced Chemical Engineering AGraduate School of Advanced Science and Engineering2019spring semester
Advanced Chemical Engineering AGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Laboratory Course for Applied ChemistryGraduate School of Advanced Science and Engineering2019full year
Seminar on Special Topics and Experimental ResultsGraduate School of Advanced Science and Engineering2019full year
Advanced Material Process EngineeringGraduate School of Advanced Science and Engineering2019fall semester
Research Ethics in Applied ChemistryGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Research Ethics in Applied ChemistryGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Seminar on Material Process Engineering AGraduate School of Advanced Science and Engineering2019spring semester
Material Process Engineering A: SeminarGraduate School of Advanced Science and Engineering2019spring semester
Seminar on Material Process Engineering BGraduate School of Advanced Science and Engineering2019fall semester
Material Process Engineering B: SeminarGraduate School of Advanced Science and Engineering2019fall semester
Master's Thesis (Department of Applied Chemistry)Graduate School of Advanced Science and Engineering2019full year
Assessment and Design of Chemical Technologies IGraduate School of Advanced Science and Engineering2019an intensive course(fall)
Assessment and Design of Chemical Technologies IGraduate School of Advanced Science and Engineering2019an intensive course(fall)
Assessment and Design of Chemical Technologies IGraduate School of Advanced Science and Engineering2019an intensive course(fall)
Assessment and Design of Chemical Technologies IGraduate School of Advanced Science and Engineering2019an intensive course(fall)
Assessment and Design of Chemical Technologies IIGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Assessment and Design of Chemical Technologies IIGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Assessment and Design of Chemical Technologies IIGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Assessment and Design of Chemical Technologies IIGraduate School of Advanced Science and Engineering2019an intensive course(spring)
Research on Chemical EngineeringGraduate School of Advanced Science and Engineering2019full year
Practical Chemical Wisdom: Seminar AGraduate School of Advanced Science and Engineering2019full year
Practical Chemical Wisdom: Seminar BGraduate School of Advanced Science and Engineering2019full year
Research on Applied Chemistry A NODA, SuguruGraduate School of Advanced Science and Engineering2019full year

Others Educational Activity

Teaching Award from Waseda University