Name

TAKEDA, Naoya

Official Title

Professor

Affiliation

(School of Advanced Science and Engineering)

Profile

1995 JSPS Research Fellow (DC1) 1998 JSPS Research Fellow (PD) 2001 Assistant Professor, Institute of Biomedical Engineering and Science, Tokyo Women’s Medical University 2005 Associate Professor, Institute for Biomedical Engineering, Waseda University 2007 Associate Professor, Dept. of Life Sci. and Med. Biosci., School of Adv. Sci. and Eng., Waseda University 2018 Professor, Dept. of Life Sci. and Med. Biosci., School of Adv. Sci. and Eng., Waseda University

Contact Information

Mail Address

Mail Address
ntakeda@waseda.jp

Address・Phone Number・Fax Number

Address
TWIns bldg., 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
Phone Number
+81-3-5369-7323
Fax Number
+81-3-5369-7323

URL

Web Page URL

http://www.waseda.jp/sem-takeda/index.html(Top Page of Takeda Lab)

http://researchers.waseda.jp/profile/ja.a6a0cbb9c044b614b03dcd2e4c1b68d4.html(Researcher Database of Waseda University)

Pure
Scival
Grant-in-aids for Scientific Researcher Number
60338978
ORCID ID
0000-0003-1088-2492

Sub-affiliation

Sub-affiliation

Faculty of Science and Engineering(Graduate School of Advanced Science and Engineering)

Research Council (Research Organization)/Affiliated organization(Global Education Center)

Affiliated Institutes

東日本大震災復興研究拠点・先端環境医工科学研究所

研究所員 2011-2013

欧州バイオメディカルサイエンス研究所

研究所員 2012-2012

欧州バイオメディカルグリーンサイエンス研究所

研究所員 2012-2014

ライフサポートイノベーション研究所

研究所員 2014-2014

欧州バイオメディカルグリーンサイエンス研究所

プロジェクト研究所所長 2015-2016

グローバルバイオメディカルグリーンサイエンス研究所

研究所員 2017-2017

グローバルバイオメディカルグリーンサイエンス研究所

研究所員 2017-2018

理工学術院総合研究所(理工学研究所)

兼任研究員 2018-

ライフサポートイノベーション研究所

研究所員 2015-2019

ライフサポートイノベーション研究所

研究所員 2019-

Educational background・Degree

Educational background

-1993 The University of Tokyo Faculty of Engineering Department of Industrial Chemistry
1993-1998 The University of Tokyo Graduate School of Engineering Department of Chemistry and Biotechnology
-2007 Waseda University Graduate School of Asia-Pacific Studies Business Administration in Technology Management

Degree

Doctor of Engineering Coursework The University of Tokyo Bio-related chemistry

Master of Business Administration in Technology Management Coursework Waseda University Management

Career

2007-2018Waseda UniversityDepartment of Life Science and Medical Bioscience, School of Advanced Science and EngineeringAssociate Professor
2005-2007Waseda UniversityInstitute for Biomedical EngineeringAssociate Professor
2004-2005Waseda UniversityInstitute for Biomedical EngineeringLecturer
2001-2004Tokyo Women’s Medical UniversityInstitute of Advanced Biomedical Engineering and ScienceAssistant Professor
2001-2004Tokyo Women's Medical UniversityDepartment of Neurosurgery(Concurrent) Assistant Professor
1995-1998Japan Society for the Promotion of ScienceReseach Fellow (DC1)
1998-2001Japan Society for the Promotion of ScienceReseach Fellow (PD)

Academic Society Joined

Japanese Society for Biomaterials Councilor

The Chemical Society of Japan

The Society of Polymer Science, Japan

The Japanese Society for Regenerative Medicine

The Japan Neuroscience Society

The Japan Society of Drug Delivery System

Japanese Society for Artificial Organs

Intelligent Nano Materials Society, The Society of Non-Traditional Technology Member of Managing Committee

OfficerCareer(Outside the campus)

2015-Japanese Society for BiomaterialsCouncilor
2006-2012Japanese Society for BiomaterialsCouncilor
2010-Intelligent Nano Materials Society, The Society of Non-Traditional TechnologyMember of Managing Committee
2002-Micromachine CenterMember of the committee, Research Department

Award

Publicity Award, Publicity Committee, The Society of Polymer Science, Japan

2017Conferment Institution:Publicity Committee, The Society of Polymer Science, Japan

Title:チキソトロピー性セルロースゲルを培養場とした多層ファイバー中での筋管形成

Award Winner(Group):Keiichi Imato、Kenji Yoneda、Tomo Tanaka、Naoya Takeda

Teaching Award, Waseda University

2017Conferment Institution:Waseda University

Title:Organic Chemistry A

Award Winner(Group):Naoya Takeda

Bio4Apps 2017 Best Award

2017Conferment Institution:International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS & Applications (Bio4Apps 2017)

Award Winner(Group):Masao Maruyama

CSJ Poster Presentation Award 2017 for Excellent Research

2017Conferment Institution:7th CSJ Chemistry Festa 2017

Award Winner(Group):Kenji Yoneda

CSJ Poster Presentation Award 2017 for Excellent Research

2017Conferment Institution:7th CSJ Chemistry Festa 2017

Award Winner(Group):Masao Maruyama

Excellent Poster Presentation Award at 66th Symposium on Macromolecules

2017Conferment Institution:The Society of Polymer Science, Japan

Award Winner(Group):Hidekazu Nakajima

Poster Award

2017Conferment Institution:The 2nd International Symposium on Bio-Therapeutics Delivery

Award Winner(Group):Risa Shukuwa

Poster Presentation Award for the Excellent Research

2016Conferment Institution:6th CSJ Chemistry Festa 2016

Award Winner(Group):Kazuho Nagata

Poster Presentation Award for the Excellent Research

2016Conferment Institution:6th CSJ Chemistry Festa 2016

Award Winner(Group):Nao Machida

Poster Presentation Award for the Excellent Research

2016

Title:6th CSJ Chemistry Festa 2016

Award Winner(Group):Ai Ozaki

Excellent Poster Presentation Award at 65th Symposium on Macromolecules

2016Conferment Institution:The Society of Polymer Science, Japan

Award Winner(Group):Keita Tanaka

Excellent Poster Presentation Award at 65th Symposium on Macromolecules

2016Conferment Institution:The Society of Polymer Science, Japan

Award Winner(Group):Risa Shukuwa

Excellent Presentation Award for the Student at the 25th Inteligent Materials/Systems Symposium

2015Conferment Institution:The Society of Non-Traditional Technology, Intelligent Materials/Systems Forum

Award Winner(Group):Ai Ozaki

Highlight Paper of the 37th Annual Meeting of the Japanese Society for Biomaterials

2015Conferment Institution:Japanese Society for Biomaterials

Award Winner(Group):Ai Ozaki

Excellent Poster Presentation Award

2015Conferment Institution:The International Symposium on Nanoarchitectonics for Mechanobiology

Award Winner(Group):Miki Sawatari

The Best Poster Presentation Award for the Most Excellent Research

2015Conferment Institution:5th CSJ Chemistry Festa 2015

Award Winner(Group):Kenichi Masuda

Poster Presentation Award for the Excellent Research

2015Conferment Institution:5th CSJ Chemistry Festa 2015

Award Winner(Group):Di He

Poster Presentation Award for the Excellent Research

2015Conferment Institution:5th CSJ Chemistry Festa 2015

Award Winner(Group):Miki Sawatari

Teaching Award, Waseda University

2014Conferment Institution:Waseda University

Title:Analytical Chemistrry A

Award Winner(Group):Naoya Takeda

Poster Presentation Award for the Excellent Research

2014Conferment Institution:4th CSJ Chemistry Festa 2014

Award Winner(Group):Tetsuya Kurebayashi

Poster Presentation Award for the Excellent Research

2013Conferment Institution:3rd CSJ Chemistry Festa 2013

Award Winner(Group):Yutaro Nakamura

Bio4Apps 2013 Best Award

2013Conferment Institution:International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2013 & 5th Sensing Biology Symposium

Award Winner(Group):Hitomi Oku

Biotechnology and Bioengineering, Top 50 Reviewers of 2012

2012

Award Winner(Group):Naoya Takeda

ICBS2013 Biomaterials Science Poster Prize (sponsored by RSC Publishing)

2012Conferment Institution:2nd International Conference on Biomaterials Science (ICBS2013)

Award Winner(Group):Aya Tsubokura

Poster Presentation Award for the Excellent Research

2012Conferment Institution:2nd CSJ Chemistry Festa 2012

Award Winner(Group):Aya Tsubokura

Excellent Presentation Award for the Student

2011Conferment Institution:The Society of Non-Traditional Technology, Intelligent Materials/Systems Forum

Award Winner(Group):Kenichi Tamura

Poster Presentation Award for the Excellent Research

2011Conferment Institution:1st CSJ Chemistry Festa 2011

Award Winner(Group):Yoshifumi Kawagishi

Poster Presentation Award for the Excellent Research

2011Conferment Institution:1st CSJ Chemistry Festa 2011

Award Winner(Group):Kenichi Tamura

Grant Award, 27th Shorai Foundation for Science and Technology

2009Conferment Institution:Shorai Foundation for Science and Technology

Title:細胞の分化・極性を制御するナノ構造化高分子培養基板システムの構築

Award Winner(Group):Naoya Takeda

Interview Guide

Category
Engineering
Research Field
Biomaterials, Polymer Chemistry, Cellular and Tissue Engineering
Keywords
Functional Polymer Materials, Soft Interface, Fabrication of 3D Engineered Tissues

Research Field

Keywords

Biomaterials, Functional Polymer Materials, Soft Interface, Cellular and Tissue Engineering, Regenerative Medicine, Bio-MEMS

Grants-in-Aid for Scientific Research classification

Complex systems / Biomedical engineering / Biomedical engineering/Biomaterial science and engineering

Chemistry / Applied chemistry / Polymer chemistry

Interdisciplinary science and engineering / Nano/Micro science / Nanobioscience

Chemistry / Material engineering / Thin film/Surface and interfacial physical properties

Engineering / Material engineering / Structural/Functional materials

Research interests Career

Micro/nano biotechnology and biointerface engineering to manipulate cell behavior and Applications to Biomedical Engineering

Current Research Theme Keywords:Biointerface between biomaterials and cells, Bio-MEMS / Bio-NEMS, Manipulating single cells

Individual research allowance

Paper

Photoresponsive Fiber Scaffolds with a Core–sheath Nanostructure for Regulating Cell Behaviors

Kazuho Nagata, Tetsuya Kurebayashi, Keiichi Imato, Naoya Takeda*

Journal of Materials Chemistry B (Back Cover) Peer Review Yes 6p.2052 - 20562018-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Poly(N‑isopropylacrylamide)-Grafted Polydimethylsiloxane Substrate for Controlling Cell Adhesion and Detachment by Dual Stimulation of Temperature and Mechanical Stress

Yoshikatsu Akiyama*, Miki Matsuyama, Masayuki Yamato, Naoya Takeda*, Teruo Okano*

Biomacromolecules Peer Review Yes 19p.4014 - 40222018-

DOI

Detail

Publish Classification:Research paper (scientific journal)

灌流培養のための紙を使った自律駆動型連続送液システムの設計

有坂 慶紀, 尾﨑 愛, 今任 景一, 武田 直也

バイオマテリアル –生体材料- Invitation Yes 36p.156 - 1572018-

Detail

Publish Classification:Research paper (scientific journal)

可逆的かつ長期安定的に高い細胞パターニング機能を実現するスピロピラン導入光応答性ソフト界面の創製

有坂 慶紀, 何 迪, 今任 景一, 武田 直也

Colloid & Interface Communication Invitation Yes 43p.20 - 232018-

Detail

Publish Classification:Research paper (scientific journal)

Thermoresponsive Polymer-modified Microfibers for Cell Separations

Kenichi. Nagase*, Yoichi Sakurada, Satoru Onizuka, Takanori Iwata, Masayuki Yamato, Naoya Takeda*, Teruo Okano*

Acta Biomaterialia Peer Review Yes 53p.81 - 922017-

DOIScopus

Detail

Publish Classification:Research paper (scientific journal) ISSN:17427061

Outline:© 2017 Acta Materialia Inc. Thermoresponsive polymer-modified microfibers were prepared through electrospinning of poly(4-vinylbenzyl chloride) (PVBC) and subsequent surface-initiated atom transfer radical polymerization for grafting poly(N-isopropylacrylamide) (PIPAAm). Electrospinning conditions were optimized to produce large-diameter (20 μm) PVBC microfibers. The amount of PIPAAm grafted on the microfibers was controlled via the IPAAm monomer concentration. The microfibers exhibited thermally controlled cell separation by selective adhesion of normal human dermal fibroblasts in a mixed cell suspension that also contained human umbilical vein endothelial cells. In addition, adipose-derived stem cells (ADSCs) exhibited thermally modulated cell adhesion and detachment, while adhesion of other ADSC-related cells was low. Thus, ADSCs could be separated from a mixture of adipose tissue-derived cells simply by changing the temperature. Overall, the PIPAAm-modified microfibers are potentially applicable as temperature-modulated cell separation materials. Statement of Significance Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) polymer-modified poly(4-vinylbenzyl chloride) (PVBC) microfibers were prepared via electrospinning of PVBC, followed by surface-initiated ATRP. They formed effective thermally-modulated cell separation materials with large surface areas. Cells adhered and extended along the modified microfibers; this was not observed on previously reported PIPAAm-modified flat substrates. The cellular adhesion enabled separation of fibroblast cells, as well as that of adipose-derived mesenchymal stem cells, from mixtures of similar cells. Thus, the temperature-controlled thermoresponsive microfibers would be potentially useful as cell separation materials.

A Photoresponsive Soft Interface Reversibly Controls Wettability and Cell Adhesion by Conformational Changes in a Spiropyran-Conjugated Amphiphilic Block Copolymer

Di He, Yoshinori Arisaka, Kenichi Masuda, Mitsuya Yamamoto, Naoya Takeda*

Acta Biomaterialia Peer Review Yes 51p.101 - 1112017-

PubMedDOIScopus

Detail

Publish Classification:Research paper (scientific journal) ISSN:17427061

Outline:© 2017 Acta Materialia Inc. The functionalities of soft interfaces including cell adhesion can be enhanced by dynamic conversion of polymer properties and movement via external stimuli. Light is a superior stimulus, and various surfaces modified with photoreactive molecules have been prepared. However, in most of these studies, the surface properties are irreversibly changed due to photo-degradation, and reversible adhesion and collection of cells is not feasible. In this study, we developed a photoresponsive polymer soft interface that was able to spatiotemporally control wettability, cell adhesion, and detachment in a reversible manner. Spiropyran molecules were introduced into the hydrophobic block of an amphiphilic diblock copolymer consisting of poly(methyl methacrylate) and polyethylene glycol, and the monomer unit numbers of these components were optimized. The copolymer was immobilized on a glass substrate as a nanofilm. With alternating irradiation using UV and visible light, the surface exhibited reversible changes in hydrophobicity and hydrophilicity, and the direction of change was opposite to the polarity change in photo-isomerization of spiropyran. We also achieved photo-control of effective cell adhesion and detachment with sequential irradiation with UV and visible light. These remarkable functions could be ascribed to conformational changes triggered by photo-isomerization of spiropyran. This photoresponsive polymer soft interface may have applications as a powerful tool in biological studies by facilitating sequential changes in wettability and bioaffinity. Statement of Significance We developed a photoresponsive polymer soft interface, which was able to spatiotemporally control wettability and cell adhesion/detachment in a reversible manner, by introducing spiropyran into the hydrophobic block of an amphiphilic diblock copolymer. With alternating irradiation using UV and visible light, the surface exhibited unique reversible wettability changes; the direction of hydrophobicity and hydrophilicity change was opposite to the polarity change in spiropyran photo-isomerization. Light-dependent reversible control of spatiotemporal cell adhesion and detachment was also achieved with sequential UV (adhesion) and visible light irradiation (detachment). Cell detachment using noncytotoxic visible light was realized for the first time. Cell-patterning capability stably lasted for 25 days. This photoresponsive surface could be applied to fabrication of engineered tissues comprised of several cellular species.

Thermoresponsive Polymer-modified Microfibers for Cell Separations

Kenichi Nagase*, Yoichi Sakurada, Satoru Onizuka, Takanori Iwata, Masayuki Yamato, Naoya Takeda*, Teruo Okano*

Acta Biomaterialia Peer Review Yes 53p.81 - 922017-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Micro/Nano-Imprinted Substrates Grafted with a Thermoresponsive Polymer for Thermally Modulated Cell Separation

Kenichi Nagase*, Lisa Shukuwa, Takahiro Onuma, Masayuki Yamato, Naoya Takeda*, Teruo Okano*

Journal of Materials Chemistry B (Front Cover) Peer Review Yes 5p.5924 - 59302017-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Photo-induced In Situ Crosslinking of Polymer Brushes With Dimethyl Maleimide Moieties for Dynamically Stimulating Stem Cell Differentiation

Yoshinori Arisaka, Yuka Nishijima, Shin-ichi Yusa, Naoya Takeda*

Journal of Biomaterials Science, Polymer Edition Peer Review Yes 27(13) p.1331 - 13402016-

DOIScopus

Detail

Publish Classification:Research paper (scientific journal)

Outline:© 2016 Informa UK Limited, trading as Taylor & Francis Group.We designed photo-crosslinkable polymer brushes with dimethylmaleimide moieties, in order to demonstrate dynamic stimulation of cell differentiation in mesenchymal stem cells (MSCs). The polymer brushes were synthesized by surface-initiated reversible addition fragmentation chain transfer polymerization using dimethylmaleimide ethyl methacrylate and methyl methacrylate on a chain transfer agent-immobilized glass surface. The polymer brushes were crosslinked by photodimerization of the dimethylmaleimide moieties within polymer chains with stem cells present on the surface. In order to evaluate the effects of in situ photo-induced crosslinking of the polymer brushes on gene expression of stem cells, human bone marrow MSCs were cultured under static and dynamic culture conditions for 7 days. Expression of the osteocalcin (Ocn) gene in MSCs was used as an indicator of osteoblast differentiation under dynamic culture conditions. Structural conversion from non-crosslinked polymer brushes to crosslinked polymer brushes increased the expression of Ocn by 1.4-fold in the presence of adhered cells, compared with non-crosslinked polymer brushes under static culture conditions. These results suggest that MSCs recognized surface conversion from non-crosslinked to crosslinked structures, which resulted in altered differentiation lineages. Therefore, photo-crosslinkable surfaces with dimethyl maleimide moieties are potential novel materials for dynamically stimulating MSC differentiation.

Self-Driven Perfusion Culture System Using a Paper-Based Double-Layered Scaffold

Ai Ozaki, Yoshinori Arisaka, Naoya Takeda*

Biofabrication Peer Review Yes 8p.0350102016-

DOIScopusWoS

Detail

Publish Classification:Research paper (scientific journal) ISSN:17585082

Outline:© 2016 IOP Publishing Ltd.Shear stress caused by fluid flow is known to promote tissue development from cells in vivo. Therefore, perfusion cultures have been studied to investigate the mechanisms involved and to fabricate engineered tissues in vitro, particularly those that include blood vessels. Microfluidic devices, which function with fine machinery of chambers and microsyringes for fluid flow and have small culture areas, are conventionally used for perfusion culture. In contrast, we have developed a self-driven perfusion culture system by using a paper-based double-layered scaffold as the fundamental component. Gelatin microfibers were electrospun onto a paper material to prepare the scaffold system, in which the constant perfusion of the medium and the scaffold for cell adhesion/proliferation were functionally divided into a paper and a gelatin microfiber layer, respectively. By applying both the capillary action and siphon phenomenon of the paper-based scaffold, which bridged two medium chambers at different height levels, a self-driven medium flow was achieved and the flow rate was also stable, constant, and quantitatively controllable. Moreover, the culture area was enlargeable to the cm2 scale. The endothelial cells cultivated on this system oriented along the medium-flow direction, suggesting that the shear stress caused by medium flow was effectively applied. This perfusion culture system is expected to be useful for fabricating three-dimensional and large engineered tissues in the future.

In Situ Cross-linked Electrospun Fiber Scaffold of Collagen for Fabricating Cell-dense Muscle Tissue

Naoya Takeda*, Kenichi Tamura, Ryo Mineguchi, Yumiko Ishikawa, Yuji Haraguchi, Tatsuya Shimizu*, Yusuke Hara

Journal of Artificial Organs Peer Review Yes 19(2) p.141 - 1482016-

DOIScopus

Detail

Publish Classification:Research paper (scientific journal) ISSN:14347229

Outline:© 2015, The Japanese Society for Artificial Organs.Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future.

Cellular Events and Behaviors After Grafting of Stratified Squamous Epithelial Cell Sheet Onto a Hydrated Collagen Gel

Yoshiyuki Kasai, Naoya Takeda*, Shinichiro Kobayashi, Ryo Takagi, Masayuki Yamato

FEBS Open Bio Peer Review Yes 7p.691 - 7042016-

DOIScopus

Detail

Publish Classification:Research paper (scientific journal) ISSN:22115463

Outline:© 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. Autologous stratified squamous epithelial cell sheets have been successfully used to treat epithelial defects in tissues such as the cornea and the esophagus. However, the regenerative cellular events occurring in the grafted epithelial cells are unclear in the early stages of wound healing. In this study, we created an in vitro grafting model using cultured normal human epidermal keratinocyte (NHEK) sheets and a type I collagen gel to investigate the cellular processes that occur within the grafted cell sheet. Cultured NHEK cells successfully became a stratified squamous cell sheet resembling epithelial tissue, retained expression of cellular integrins and adhesion proteins, and adhered successfully to a type I collagen gel. After culture on the collagen gel, expression of E-cadherin, and β-catenin decreased in the cells of the basal layer of the grafted cell sheet, resembling events characteristic of a partial epithelial–mesenchymal transition (EMT). These basal cells also induced migration of the cell sheet. Those phenomena are consistent with the essential events that occur in the wound-healing process observed previously in cell studies. Therefore, the epithelial cell sheet grafted onto a type I collagen gel is a suitable model in vitro to study cellular events and behaviors. Furthermore, we also addressed the therapeutic mechanisms by which the epithelial cell sheet promotes wound healing.

Brush Biopsy of Human Oral Mucosal Epithelial Cells as a Quality Control of the Cell Source for Fabrication of Transplantable Epithelial Cell Sheets for Regenerative Medicine

Yoshiyuki Kasai, Hiroaki Sugiyama, Ryo Takagi, Makoto Kondo, Toshiyuki Owaki, Hideo Namiki, Teruo Okano, Naoya Takeda, Masayuki Yamato*

Regenerative Therapy Peer Review Yes 4p.71 - 772016-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Enhanced Wettability Changes by Synergistic Effect of Micro/Nanoimprinted Substrates and Grafted Thermoresponsive Polymer Brushes

Kenichi Nagase*, Takahiro Onuma, Masayuki Yamato, Naoya Takeda*, Teruo Okano*

Macromolecular Rapid Communications (Front Cover) Peer Review Yes 36(22) p.1965 - 19702015-

DOIScopus

Detail

Publish Classification:Research paper (scientific journal) ISSN:10221336

Outline:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Thermoresponsive polymer brushes are grafted on micro/nanostructured polymer substrates as new intelligent interfaces that synergistically enhance wettability changes in response to external temperature stimuli. Thermoplastic poly(styrene-co-4-vinylbenzyl chloride) [P(St-co-VBC)] is synthesized using radical polymerization and spin-coated on a glass substrate. Micro/nanopillar and hole patterns are imprinted on the P(St-co-VBC) layer using thermal nanoimprint lithography. Poly(N-isopropylacrylamide) (PIPAAm) brushes are grafted on the micro/nanostructured P(St-co-VBC) layer through surface-initiated atom-transfer radical polymerization using 4-vinylbenzyl chloride as the initiator. The imprinted micro/nanostructures and grafted PIPAAm brush chain lengths affect the surface wettability. Combinations of nanopillars or nanoholes (diameter 500 nm) and longer PIPAAm brushes enhance hydrophobic/hydrophilic changes in response to temperature changes, compared with the flat substrate. The thermoresponsive hydrophobic/hydrophilic transition is synergistically enhanced by the nanostructured surface changing from Cassie-Baxter to Wenzel states. This PIPAAm-brush-modified micro/nanostructured P(St-co-VBC) is a new intelligent interface that effectively changes wettability in response to external temperature changes. Novel thermoresponsive interfaces showing significant wettability changes are fabricated by nanoimprinting a poly(styrene-co-4-vinylbenzyl chloride) layer and subsequent surface-initiated atom transfer radical polymerization of poly(N-isopropylacrylamide) (IPAAm). Combinations of nanopillars or nanoholes and longer PIPAAm brushes enhance hydrophobic/hydrophilic changes in response to temperature changes, compared with a flat substrate.

Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation

Kenichi Nagase*, Yuri Hatakeyama, Tatsuya Shimizu, Katsuhisa Matsuura, Masayuki Yamato, Naoya Takeda, Teruo Okano*

Biomacromolecules Peer Review Yes 16p.532 - 5402015-

DOIWoS

Detail

Publish Classification:Research paper (scientific journal)

How to prevent contamination with Candida albicans during the fabrication of transplantable oral mucosal epithelial cell sheets

Ryo Takagi, Shinichiro Kobayashi, Masayuki Yamato*, Toshiyuki Owaki, Yoshiyuki Kasai, Takahiro Hosoi, Yusuke Sakai, Kengo Kanetaka, Tokutaro Minamizato, Asuka Minematsu, Makoto Kondo, Nobuo Kanai, Naoyuki Yamaguchi, Kazuhiro Nagai, Yasushi Miyazaki, Naoya Takeda, Fumio Fukai, Izumi Asahina, Taiga Miyazaki, Shigeru Kohno, Masakazu Yamamoto, Kazuhiko Nakao, Susumu Eguchi, Teruo Okano

Regenerative Therapy Peer Review Yes 1p.1 - 42015-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Stem Cell Separation Using Thermoresponsive Copolymer Brushes Having Cationic Charge

Kenichi Nagase, Yuri Hatakeyama, Tatsuya Shimizu, Katsuhisa Matsuura, Masayuki Yamato, Naoya Takeda, Teruo Okano

2015 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2015 2015-

DOIScopus

Detail

Outline:© 2015 IEEE.For developing new stem cell separation tool, we have prepared thermoresponsive cationic copolymer brush, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylacrylamide-co-N-tert-butylacrylamide (IPAAm-co-DMAPAAm-co-tBAAm) on glass substrates through surface-initiated atom transfer radical copolymerization (ATRP). Using the prepared thermoresponsive cationic copolymer brush, mesenchymal stem cell separation was performed simply by changing temperature.

Highly Controllable Three-dimensional Sheath Flow Device for Fabrication of Artificial Capillary Vessels

Junichi Ito, Rui Sekine, Donghyun Yoon, Yutaro Nakamura, Hitomi Oku, Hiroki Nansai, Tomoaki Chikasawa, Teruyoshi Goto, Tetsushi Sekiguchi, Naoya Takeda, Shuichi Shoji

MEMS2015 Peer Review Yes p.480 - 4832015-

One Core-Five Sheaths Coaxial Flow Formation Using Multilayer Stacked Flow Focusing Structure

Donghyun Yoon, Junichi Ito, Naoya Takeda, Tetsushi Sekiguchi, Shuichi Shoji

MEMS2015 Peer Review Yes p.539 - 5422015-

Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature Change

Kenichi Nagase, Yuri Hatakeyama, Tatsuya Shimizu, Katsuhisa Matsuura, Masayuki Yamato, Naoya Takeda, Teruo Okano*

Biomacromolecules Peer Review Yes 14p.3423 - 34332013-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Spatiotemporally Controlled Navigation of Neurite Outgrowth in Sequential Steps on the Dynamically Photo-Patternable Surface

Yoshikuni Edagawa, Jun Nakanishi, Kazuo Yamaguchi, Naoya Takeda*

Colloids and Surfaces B: Biointerfaces Peer Review Yes 99p.20 - 262012-

DOIWoS

Detail

Publish Classification:Research paper (scientific journal)

Outline::A great number of the neurites interconnect neuronal cells in a brain to form the complicate neural circuits, whose structures are dynamically changed with changing the numbers and destinations of the neurites. Fabricating a model of neural network in vitro is one of the promising methods to precisely assay the signal transmission and processing within the circuit as well as to examine behaviors of individual cells. In this study, aiming to fabricate the dynamically alterable neural network in vitro, the chemically modified surface with the photo-reactive self-assembled monolayer was applied to navigate the neurite outgrowth activities of differentiated PC12 cell in the spatially and temporally controlled manner. Numbers of the cell soma were effectively adhered and simultaneously arrayed according to the 25 μm square patterns, which were easily fabricated with a single shot of the 365-nm ultraviolet (UV) irradiation and pre-coated with the extracellular matrix (ECM) protein. Narrow neurites were successively guided along the 5 μm line patterns drawn on the surface by stepwise irradiation of the UV light in the intended designs and at appropriate timing. Sprouting number, elongating direction, bending, branching, and formation of autapse-like structure were controllable. The rate of neurite elongation was dependent on the ECM species, that were pre-coated beneath the cell soma, suggesting the ECM stimulated the basal side of the cell soma and affected the outgrowth process of the neurite. Navigation of the neurite elongation along the microline pattern for a primary rat brain cortex neuron was also achieved.

Dynamically Cell Separating Thermo-Functional Biointerfaces with Densely Packed Polymer Brushes

Kenichi Nagase, Ayaka Kimura, Tatsuya Shimizu, Katsuhisa Matsuura, Masayuki Yamato, Naoya Takeda, Teruo Okano

J. Mater. Chem. Peer Review Yes 22p.19514 - 195222012-

DOIWoS

Detail

Publish Classification:Research paper (scientific journal)

Size-influence in Cell Community Against Apoptotic Impact

Ryo Harigai, Kentaro Matsuki, Naoya Takeda, Naonobu Shimamoto, Yoshikuni Edagawa

JOURNAL OF PHARMACOLOGICAL SCIENCES 115p.224P2011-

WoS

Detail

ISSN:1347-8613

Navigation of Neurite Elongation and Fabrication of the Networks of Neural Cells with Fine Resolution on the Novel Cell Culture Surface Patterned by Electron Beam Lithography

Naoya Takeda, Nobuhiro Yoshino, Yoshikumi Edagawa, Naonobu Shimamoto

Neurosci. Res. 65(Suppl. 1) p.e2192010-

Development of a Poly-Dimethylsiloxane Microfluidic Device for Single Cell Isolation and Incubation

Yoshinori Yamaguchi, Takahiro Arakawa, Naoya Takeda, Yoshikuni Edagawa. Shuichi Shoji

Sens. & Actua. B Peer Review Yes 136p.555 - 5612009-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Regulation of the Outgrowth Position of Neurites in Cell Body and the Direction of Their Elongation for PC12 Cells in Three Dimensional Hydrogel Culture System with Feeble Flow of the Solvent

Naoya Takeda, Jun Uehara, Yoshikuni Edagawa

Neurosci. Res. 64(Suppl. 1) p.S1322009-

Plasmid DNA-Encapsulating Liposomes: Effect of a Spacer between the Cationic Head Group and Hydrophobic Moieties of the Lipids on Gene Expression Efficiency

Yosuke Obata, Shunsuke Saito, Naoya Takeda, Shinji Takeoka*

Biochim. Biophys. Acta Peer Review Yes 1788p.1148 - 11582009-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Realization, Characterization and Functionalization of Lipidic Wrapped Carbon Nanotubes

Gianni Ciofani*, Yosuke Obata, Izumi Sato, Yosuke Okamura, Vittoria Raffa, Arianna Menciassi, Paolo Dario, Naoya Takeda, Shinji Takeoka

J. Nanopart. Res. Peer Review Yes 11p.477 - 4842009-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Active Species for Ce(IV)-Induced Hydrolysis of Phosphodiester Linkage in cAMP and DNA

Jun Sumaoka, Kenichiro Furuki, Yuki Kojima, Masahiko Shibata, Kimihiko Hirao, Naoya Takeda, Makoto Komiyama*

Nucleosides Nucleotides Nucleic Acids Peer Review Yes 25p.523 - 5382006-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Temperature-responsive Polymeric Carriers Incorporating Hydrophobic Monomers for Effective Transfection in Small Doses

Naoya Takeda, Emiko Nakamura, Masayuki Yokoyama, Teruo Okano*

J. Contr. Release Peer Review Yes 95(2) p.343 - 3552004-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Kinetic and Theoretical Studies on the Mechanism of Alkaline Hydrolysis of DNA

Naoya Takeda, Masahiko Shibata, Nobuo Tajima, Kimihiko Hirao, Makoto Komiyama*

J. Org. Chem. Peer Review Yes 65p.4391 - 43962000-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Hydrolysis of DNA and RNA by Lanthanide Ions: Mechanistic Studies Leading to New Applications

Makoto Komiyama, Naoya Takeda, Hidemi Shigekawa

Chem. Commun. Peer Review Yes p.1443 - 14511999-

DOI

Detail

Publish Classification:Research paper (scientific journal)

DNA Hydrolysis by Ce(IV) Involves the Cooperation of Two Metal Ions

Jun Sumaoka, Naoya Takeda, Yusuke Okada, Hideyuki Takahashi, Hidemi Shigekawa

Nucleic Acids, Symp. Ser. Peer Review Yes 39p.137 - 1381998-

Non-enzymatic Hydrolyses of Aryl Esters of Thymidine 3’-Monophosphate as Probes for the Rate-determining Step in DNA Hydrolysis

Naoya Takeda, Yusuke Okada, Morio Yashiro, Makoto Komiyama

Nucleic Acids, Symp. Ser. Peer Review Yes 37p.263 - 2641997-

Unprecedentedly Fast DNA Hydrolysis by the Synergism of the Cerium(IV)-Praseodymium(III) and the Cerium(IV)-Neodymium(III) Combinations

Naoya Takeda, Takamitsu Imai, Makoto Irisawa, Jun Sumaoka, Morio Yashiro, Hidemi Shigekawa, Makoto Komiyama

Chem. Lett. Peer Review Yes 25p.599 - 6001996-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Synergetic Catalysis by Two Non-Lanthanide Metal Ions for Hydrolysis of Diribonucleotides

Makoto Irisawa, Naoya Takeda, Makoto Komiyama

J. Chem. Soc., Chem. Commun. Peer Review Yes p.1221 - 12221995-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Efficient and Oxygen-Independent Hydrolysis of Single-Stranded DNA by Cerium(IV) Ion

Makoto Komiyama, Naoya Takeda, Yota Takahashi, Hiroshi Uchida, Tetsuro Shiiba, Teruyuki Kodama, Morio Yashiro

J. Chem. Soc., Perkin Trans. 2 Peer Review Yes p.269 - 2741995-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Synergism of Ce(IV) and Pr(III) for the Fastest Non-enzymatic DNA Hydrolysis Ever

Naoya Takeda, M. Irisawa, Takamitsu Imai, Morio Yashiro, Makoto Komiyama

Nucleic Acids, Symp. Ser. Peer Review Yes 34p.207 - 2081995-

Cooperation of Lanthanum Ion and Non-Lanthanide Metal Ions for the Hydrolysis of Bis(4-Nitrophenyl)Phosphate

Naoya Takeda, Makoto Irisawa, Makoto Komiyama

J. Chem. Soc., Chem. Commun. Peer Review Yes p.2773 - 27741994-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Catalytically Active Species for CeCi3-Induced DNA Hydrolysis

Makoto Komiyama, Teruyuki Kodama, Naoya Takeda, Jun Sumaoka, Tetsuro Shiiba, Yoichi Matsumoto, Morio Yashiro

J. Biochem. Peer Review Yes 115p.809 - 8101994-

Detail

Publish Classification:Research paper (scientific journal)

Cerium(IV)-OligoDNA Hybrid as Highly Selective Artificial Nuclease

Makoto Komiyama, Tetsuro Shiiba, Yota Takahashi, Naoya Takeda, Kazunari Matsumura, Teruyuki Kodama

Supramol. Chem. Peer Review Yes 4p.31 - 341994-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Rare Earth Metal Ions for DNA Hydrolyses and Their Use to Artificial Nuclease

Makoto Komiyama*, Naoya Takeda, Tetsuro Shiiba, Yota Takahashi, Yoichi Matsumoto, Morio Yashiro

Nucleosides and Nucleotides Peer Review Yes 13p.1297 - 13091994-

Oxygen-independent Photocleavage of Nucleic Acids with Macrocyclic Lanthanide Complexes

Masami Kobayashi, Dai Yokotsuka, Naoya Takeda, Morio Yashiro, Makoto Komiyama*

Nucleic Acids, Symp. Ser. Peer Review Yes 31p.159 - 1601994-

DNA Hydrolysis by Cerium(IV) Does Not Involve either Molecular Oxygen or Hydrogen Peroxide

Makoto Komiyama, Tetsuro Shiiba, Teruyuki Kodama, Naoya Takeda, Jun Sumaoka, Morio Yashiro

Chem. Lett. Peer Review Yes p.1025 - 10281994-

Detail

Publish Classification:Research paper (scientific journal)

Site-Selective Hydrolysis of tRNA by Lanthanide Metal Complexes

Nobuhiro Hayashi, Naoya Takeda, Tetsuro Shiiba, Morio Yashiro, Kimitsuna Watanabe, Makoto Komiyama

Inorg. Chem. Peer Review Yes 32p.5899 - 59001993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Lanthanide Metal Complexes for the Hydrolysis of Linear DNAs

Tetsuro Shiiba, Koji Yonezawa, Naoya Takeda, Yoichi Matsumoto, Morio Yashiro, Makoto Komiyama

J. Mol. Catal. Peer Review Yes 84p.L21 - L251993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Hydrolysis of OligoDNAs by Lanthanide Metal(III) Chloride

Makoto Komiyama, Yoichi Matsumoto, Nobuhiro Hayashi, Kazunari Matsumura, Naoyo Takeda, Kimitsuna Watanabe

Polym. J. Peer Review Yes 25p.1211 - 12141993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Molecular Design of Artificial Hydrolytic Nuclease and Ribonuclease

Makoto Komiyama*, Takuya Inokawa, Tetsuro Shiiba, Naoya Takeda, Koichi Yoshinari, Morio Yashiro

Nucleic Acids, Symp. Ser. Peer Review Yes 29p.197 - 1981993-

Detail

Publish Classification:Research paper (scientific journal)

Synergism of Ce(IV) and Pr(III) for the Fastest Non-enzymatic DNA Hydrolysis Ever

Naoya Takeda, M. Irisawa, Takamitsu Imai, Morio Yashiro, Makoto Komiyama

Nucleic Acids, Symp. Ser. Peer Review Yes 34p.207 - 2081995-

Cooperation of Lanthanum Ion and Non-Lanthanide Metal Ions for the Hydrolysis of Bis(4-Nitrophenyl)Phosphate

Naoya Takeda, Makoto Irisawa, Makoto Komiyama

J. Chem. Soc., Chem. Commun. Peer Review Yes p.2773 - 27741994-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Catalytically Active Species for CeCi3-Induced DNA Hydrolysis

Makoto Komiyama, Teruyuki Kodama, Naoya Takeda, Jun Sumaoka, Tetsuro Shiiba, Yoichi Matsumoto, Morio Yashiro

J. Biochem. Peer Review Yes 115p.809 - 8101994-

Detail

Publish Classification:Research paper (scientific journal)

Cerium(IV)-OligoDNA Hybrid as Highly Selective Artificial Nuclease

Makoto Komiyama, Tetsuro Shiiba, Yota Takahashi, Naoya Takeda, Kazunari Matsumura, Teruyuki Kodama

Supramol. Chem. Peer Review Yes 4p.31 - 341994-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Rare Earth Metal Ions for DNA Hydrolyses and Their Use to Artificial Nuclease

Makoto Komiyama*, Naoya Takeda, Tetsuro Shiiba, Yota Takahashi, Yoichi Matsumoto, Morio Yashiro

Nucleosides and Nucleotides Peer Review Yes 13p.1297 - 13091994-

Oxygen-independent Photocleavage of Nucleic Acids with Macrocyclic Lanthanide Complexes

Masami Kobayashi, Dai Yokotsuka, Naoya Takeda, Morio Yashiro, Makoto Komiyama*

Nucleic Acids, Symp. Ser. Peer Review Yes 31p.159 - 1601994-

DNA Hydrolysis by Cerium(IV) Does Not Involve either Molecular Oxygen or Hydrogen Peroxide

Makoto Komiyama, Tetsuro Shiiba, Teruyuki Kodama, Naoya Takeda, Jun Sumaoka, Morio Yashiro

Chem. Lett. Peer Review Yes p.1025 - 10281994-

Site-Selective Hydrolysis of tRNA by Lanthanide Metal Complexes

Nobuhiro Hayashi, Naoya Takeda, Tetsuro Shiiba, Morio Yashiro, Kimitsuna Watanabe, Makoto Komiyama

Inorg. Chem. Peer Review Yes 32p.5899 - 59001993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Lanthanide Metal Complexes for the Hydrolysis of Linear DNAs

Tetsuro Shiiba, Koji Yonezawa, Naoya Takeda, Yoichi Matsumoto, Morio Yashiro, Makoto Komiyama

J. Mol. Catal. Peer Review Yes 84p.L21 - L251993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Hydrolysis of OligoDNAs by Lanthanide Metal(III) Chloride

Makoto Komiyama, Yoichi Matsumoto, Nobuhiro Hayashi, Kazunari Matsumura, Naoyo Takeda, Kimitsuna Watanabe

Polym. J. Peer Review Yes 25p.1211 - 12141993-

DOI

Detail

Publish Classification:Research paper (scientific journal)

Molecular Design of Artificial Hydrolytic Nuclease and Ribonuclease

Makoto Komiyama*, Takuya Inokawa, Tetsuro Shiiba, Naoya Takeda, Koichi Yoshinari, Morio Yashiro

Nucleic Acids, Symp. Ser. Peer Review Yes 29p.197 - 1981993-

Books And Publication

チップ基材の表面形状および性状が細胞に与える影響, 臓器チップの技術と開発動向

今任 景一, 武田 直也(Joint authorship)

CMC2018-

Detali

Responsible Number of Pages:48-56

Lecture And Oral

Reversible and non-degradable photocontrol of oppositely changing wettability and cell patterning of the blockcopolymer surface driven by spiropyran isomerization

Naoya Takeda

1st GLowing Polymer Symposium in KANTO2018/12

Detail

National conferenceOral presentation(general)

Fabrication of long luminal tissues in three-dimensional gel scaffolds with oriented cellulose nanofibers

Tomo Tanaka,Keiichi Imato,Kenji Yoneda,Dong Hyun Yoon,Tetsushi Sekiguchi,Shuichi Shoji,Naoya Takeda

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Fabrication of long myotube bundles in three-dimensional gel scaffolds with oriented cellulose nanofibers

Keiichi Imato,Kenji Yoneda,Tomo Tanaka,Dong Hyun Yoon,Tetsushi Sekiguchi,Shuichi Shoji,Naoya Takeda

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Perfusion culture system using paper-based bilayer scaffold with porous microfibers for effective myotube formation

Masao Maruyama,Keiichi Imato,Naoya Takeda

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Enhanced myotube formation on the oriented coaxial coresheath microfiber scaffold embedding high conductive polymer without applied voltage

Misa Nakaya,Keita Tanaka,Keiichi Imato,Naoya Takeda

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Dual stimuli-responsive PIPAAm-PDMS surfaces for controlling cell attachment and detachment

Yoshikatsu Akiyama,Miki Matsuyama,Naoya Takeda,Masayuki Yamato,Teruo Okano

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Effective development of neuromuscular junction in coculture with hiPS cell-derived motor neurons and oriented engineered muscle tissue

Fumiko Oikawa, Hironobu Takahashi,Tatsuya Shimizu,Naoya Takeda

5th Tissue Engineering and Regenerative Medicine international Society World Congress2018/09

Detail

International conferencePoster presentationVenue:Kyoto

Paper-based Perfusion Culture System Combined with Microfiber Technology

Naoya Takeda

IEEE The International Conference on Nano/Micro Engineered and Molecular Systems 2018Invitation Yes2018/04

Detail

International conferenceOral presentation(invited, special)Venue:Singapore

Fabrication of Muscle Tissue in Thixotropic Cellulose Nanofiber Gel Scaffold Using MEMS Technology

Naoya Takeda, Kenji Yoneda, Tomo Tanaka, Dong Hyun Yoon, Tetsushi Sekiguchi, Shuichi Shoji, and Keiichi Imato

International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS & Applications (Bio4Apps 2017)2017/12

Detail

International conferenceOral presentation(general)

Effective myotube formation induced by shear stress in perfusion culture using porous microfiber scaffold

Masao Maruyama, Naoya Takeda

International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS & Applications (Bio4Apps 2017)2017/12

Detail

International conferencePoster presentation

Effective induction of myotube formation using the self-driven perfusion culture system with porous polymeric fibers

2017/05

Detail

National conferenceOral presentation(general)

Mechanistic study and controlling cell behavior of photo-transmutable microphase-separated structures in soft interfaces

2017/05

Detail

National conferenceOral presentation(general)

Surface analysis of photo-responsive polymeric culture substrate showing contrary wettability changes to the polarity changes in isomerization of spiropyran

2017/05

Detail

National conferencePoster presentation

Reversible Controls of Wettability and Cell Adhesion of Photoresponsive Surface via Dynamic Conformational Change of Spiropyran-conjugated Block Copolymer

Naoya TAKEDA, Di HE

3rd International Conference on Biomaterials Science in Tokyo (ICBS2016)2016/11

Detail

International conferenceOral presentation(general)Venue:Tokyo

Self-driven Perfusion Culture System Using the Double-layered Scaffold of Paper and Microfibers for Effectively Applying Shear Stress to a Large Scale Cell Culture

Ai OZAKI, Hironobu TAKAHASHI, Tatsuya SHIMIZU, Naoya TAKEDA

2rd International Symposium on Nanoarchitectonics for Mechanobiology2016/07

Detail

International conferencePoster presentation

Hybrid cell separation system by combining nanoimprint microstructure and thermoresponsive polymer surface

Lisa SHUKUWA , Kenichi NAGASE, Takahiro ONUMA, Masayuki YAMATO, Naoya, Naoya TAKEDA, Teruo OKANO

2rd International Symposium on Nanoarchitectonics for Mechanobiology2016/07

Detail

International conferencePoster presentation

Dynamic behaviors of spiropyran-introduced photo-responsive soft interface enabling reversible and long-term sustained cell patterning

TAKEDA, Naoya; HE, Di; ARISAKA, Yoshinori

2016/03

Detail

National conferenceOral presentation(general)

Micro/Nano Fiber Scaffolds for Assembling Cells and Fabricating the Engineered Three-Dimensional Tissues

Naoya Takeda

International Conference on Bioelectronics, Biosensors, BioMedical Devices, BioMEMS/NEMS and Applications 2015 (Bio4Apps 2015).Invitation Yes2015/12

Detail

International conferenceOral presentation(invited, special)Venue:Fukuoka

Novel spiropyran-incorporated polymer surface photo-dynamically changing micro domain pattern

2015/05/29

Detail

Oral presentation(general)

Purification of Mesenchymal Stem Cell using Thermo-responsive Polymer Brush Possessing Cationic Moieties

2015/05/28

Detail

Oral presentation(general)

Fabrication of Blood Capillary from Endothelial Cells in the Coaxial Double Layered Gel Fiber Produced by the 3D Sheath Flow Microfluidic Device

Naoya Takeda

International Conference on Bioelectronics, Biosensors, BioMedical Devices, BioMEMS/NEMS and Applications 2014 (Bio4Apps 2014)Invitation Yes2014/11

Detail

International conferenceOral presentation(invited, special)Venue:Shanghai

Reversible photo-regulation of structural transition and cell adhesion on the functional surfaces modified with diblock copolymer containing spiropyran group

2014/09/24

Detail

Oral presentation(general)

Fabrication of 3D Bundle of Muscle Fibers from Myoblasts Densely Filling the Microfibrous ‘String’ Scaffold; Studies on Structure and Actuation

2nd International Conference of Biomaterials Science in Tsukuba (ICBS2013)2013/03

Detail

International conferenceOral presentation(general)

Differentiation of Mesenchymal Stem Cell on the Single Line Pattern in Nano-Size Fabricated on the Electron Beam Reactive Mask Material

2nd International Conference of Biomaterials Science in Tsukuba (ICBS2013)2013/03

Detail

International conferencePoster presentation

Cell Separating Thermoresponsive Polymer Brush Surfaces Prepared Through Surface-initiated ATRP

9th international gel symposium2012/10

Detail

International conferencePoster presentation

Thermoresponsive Copolymer Brush Surface Incorporating Hydrophobic Unit for Mutimodal Cell Separating System

9th international gel symposium2012/10

Detail

International conferencePoster presentation

Initiating Differentiation of Stem Cell into Neural Cell on the Nano Grooved Single Line Pattern Fabricated by Electron Beam Lithography

Naoya Takeda

Neuroscience 20122012/10

Detail

International conferenceOral presentation(general)

The Novel String Scaffold of Aligned Collagen Microfiber Electrospun with Crosslinking Reaction

第61回高分子討論会2012/09

Detail

National conferenceOral presentation(general)

Development of Label-free Cell Separating System Based on The Functional Surface with Thermoresponsive Polymer Brush

3rd TERMISWorld Congress 2012 "Tissue Engineering and Reenerative Medicine"2012/09

Detail

International conferencePoster presentation

Cell Separating Surfaces Using Thermoresponsive Hydrophobized Copolymer Brush

2nd International Symposium of Materials on Regenerative Medicine (2012 ISOMRM)2012/08

Detail

International conferencePoster presentation

Guiding Directional Migration by the Micropatterned Surface and Its Effect on the Proliferation/Differentiation Behaviors of Mesenchymal Stem Cell

Aya Tsubokura, Naoya Takeda

IACIS 2012 (International Association of Colloid and Interface Scientists Conference)2012/05/15

Detail

International conferencePoster presentation

Differentiation of Mesenchymal Stem Cells with Culturing on the Nano-Structured Biointerfaces Fabricated by Electron Beam Lithography

Satomi Aoki, Kenichi Tamura, Naoya Takeda

IACIS 2012 (International Association of Colloid and Interface Scientists Conference)2012/05/15

Detail

International conferencePoster presentation

Micro/nano topography by electron beam lithography to manipulate cell migration and differantiation

2011/09/24

Detail

Oral presentation(general)

Preparation of Thermoresponsive Intelligent Interface for Cell Separation

60th SPSJ Annual Meeting2011/05/25

Detail

Poster presentation

Guiding long-range directional cell migration using newly developed micropatterned substrates

The 91th Annual Meeting of CSJ2011/03/26

Detail

Oral presentation(general)

3D cell culture in collagen gel applied continuous solvent flow at small rate; Long-term culture and effect of the shear stress to the cells

2011/01/06

Detail

Oral presentation(general)

Directing Cell Migration by Controlling Cell Shape with Microstructured Substrates

2011/01/06

Detail

Oral presentation(general)

Fabrication of cell patterning system with micro-nano resolution by electron beam lithography and adhesion of single cell on the nano structure

2011/01/06

Detail

Oral presentation(general)

Navigation of neurite elongation and fabrication of the networks of neural cells with fine resolution on the novel cell culture surface patterned by electron beam lithography

Neuro20102010/09

Detail

Poster presentation

Patent

Reference Number:708

細胞捕捉装置及びそれを利用した細胞操作方法(日本)

荒川 貴博, 武田 直也, 山口 佳則, 枝川 義邦

2007-053514、2008-136475

Reference Number:2052

導電性ポリマー層と細胞接着用ポリマー層とを含む多層膜からなる細胞培養用基材(日本)

武田 直也, 今任 景一, 田中 啓太, 中谷 美沙

2018-082903、2018-196370

Reference Number:2053

チキソトロピー性を有するゲルを用いる多層3次元細胞培養足場システム(日本)

今任 景一, 米田 憲司, 武田 直也, 田中 智

2018- 83742、2019- 41755

Reference Number:2126

光に応答して可逆的に表面相分離構造を変える細胞培養用基材(日本)

武田 直也, 今任 景一, 坂野 誠人

2019- 6770、2019-194305

Reference Number:134-JP

タンパク質又は遺伝子導入用試薬(日本)

武岡 真司, 武田 直也, 胡桃坂 仁志, 坂根 勲, 池ヶ谷 菜海子, 小幡 洋輔, 齋藤 俊介

2008-545466、5403324

Research Grants & Projects

Grant-in-aids for Scientific Research Adoption Situation

Research Classification:

Development of the Novel Nano Trench-Patterned Culture Surface for Initiating Differentiation of Mesenchymal Stem Cell

2010/-0-2013/-0

Allocation Class:¥4420000

Research Classification:

An in vivo gene expressing system induced by external thermal stimuli

Allocation Class:¥13100000

Research Classification:

Advanced Micro Fluidic Engineering and Its Applications for High Sensitive Quantitative Measurements of Biomolecules

2011/-0-2016/-0

Allocation Class:¥215930000

Research Classification:

Development of polymeric materials with a highly sensitive mechanoprobe based on charge-transfer interaction and application to mechanobiology

2016/-0-2018/-0

Allocation Class:¥2990000

On-campus Research System

Special Research Project

自律神経組織体による心筋細胞組織体の拍動機能制御システムの構築

2009

Research Results Outline:1. 研究目的神経-心筋の共培養や生体情報伝達解析ならびに細胞機能制御のプラットフォームとなる培養システムの構築を目指し、その基盤技術としての、神経系1. 研究目的神経-心筋の共培養や生体情報伝達解析ならびに細胞機能制御のプラットフォームとなる培養システムの構築を目指し、その基盤技術としての、神経系細胞(初代神経細胞、神経モデル細胞、グリア細胞)の単一細胞を精緻に配置して、神経細胞ネットワークを...1. 研究目的神経-心筋の共培養や生体情報伝達解析ならびに細胞機能制御のプラットフォームとなる培養システムの構築を目指し、その基盤技術としての、神経系細胞(初代神経細胞、神経モデル細胞、グリア細胞)の単一細胞を精緻に配置して、神経細胞ネットワークを作製する培養システムの構築に注力した。この神経系細胞の単一細胞ネットワーク構築には、ナノスケールの半導体加工に汎用されている高分子の電子線レジストを用いたリソグラフィー技術を応用した。ナノサイズのパターンを描画した電子線レジストは、半導体加工ではマスク材として用いられた後に除去されるが、本研究ではこのナノ描画高分子表面を除去することなく直接に細胞のパターニングが可能な培養基板へと応用した。2. 実験電子線照射部位のみに最小解像度20 nmで精緻なパターンを作製可能なpoly[1-chloro-(methyl acrylate)-co-(1-methylstylene)]を主体とした高分子ポジ型レジストをガラス表面に400 nm厚で塗布し、電子線照射および現像処理により一辺20~50 μmの正方形パターンをアレイ状に作製した。未照射部位はpluronicF108で修飾をして、細胞の接着を妨げた。これにより、アレイ状の細胞接着領域に対して、神経細胞、アストロサイト、ならびに神経モデル細胞であるPC12細胞が単一細胞レベルで接着が可能とした。更に、100 nm幅の微細なライン状のパターンに沿って、ナノサイズである神経突起の伸長方向を精確に誘導することを試みた。3. 結果と考察PluronicF108の表面修飾は有効に機能し、高いコントラストをもって、電子線で描画したパターン上のみへ細胞が接着した。一辺20 μmの正方形の細胞接着領域をアレイ状に並べたパターンでは、アストロサイトとPC12細胞を用いた場合に、各パターンに単一の細胞を配置できた。また、蛍光染色を用いた解析では、正方形パターンの縁の各辺に沿ってアストロサイト細胞のアクチンフィラメントの集積がみられ、細胞が細胞接着領域のパターンを正確に認識して接着斑を形成していることが強く示唆された。さらに、アストロサイトやPC12細胞の細胞突起構造を、100 nm幅の微細なラインパターンに沿って精確に伸展させることも達成した。胎仔ラット由来の初代神経細胞についても、単一細胞レベルでのアストロサイトとの共培養を実現した。これらの結果から、本単一細胞培養システムは、パターン形状の適切なデザインにより、任意の形状での精緻な細胞ネットワーク形成や神経回路形成への応用が可能であることを示した。

神経筋接合部により運動機能を制御する三次元再生骨格筋組織の構築

2012

Research Results Outline: 骨格筋組織の発生では、一列に連なった筋芽細胞が融合して多核の筋管となり、筋管は横紋構造を示す収縮能をもった筋線維へと成熟する。さらに筋線維は、コラ 骨格筋組織の発生では、一列に連なった筋芽細胞が融合して多核の筋管となり、筋管は横紋構造を示す収縮能をもった筋線維へと成熟する。さらに筋線維は、コラーゲンに富んだ筋内膜に覆われて同一方向へ配向した筋束を形成する。本研究では、I型コラーゲンを用いて... 骨格筋組織の発生では、一列に連なった筋芽細胞が融合して多核の筋管となり、筋管は横紋構造を示す収縮能をもった筋線維へと成熟する。さらに筋線維は、コラーゲンに富んだ筋内膜に覆われて同一方向へ配向した筋束を形成する。本研究では、I型コラーゲンを用いて独自にデザインした「弦状」の細胞培養足場を構築すると共に、細胞密度が高く収縮能をもつ大きな三次元の骨格筋組織の構築を進め、その構造と機能を解析した。 エレクトロスピニング法で紡糸中にグルタルアルデヒド(GA)架橋を施しながら、I型コラーゲン・マイクロファイバーを同一方向に配向させつつ、足場材料密度を下げて細胞が入り込む適度な間隔を保って中空に張り、三次元の「弦状」足場を作製した。ファイバーの配向化のため、2 cmの間隔を空けた平行な2枚の銅板をエレクトロスピニングのターゲット板に用いた。架橋により機械的強度の向上(無架橋との比較でヤング率と引張り強度共に、約2.7倍に増大)と耐水溶性が付与された。また、コラーゲン溶液(HFP溶液)の粘度、GAとの混合比(コラーゲン:GA = 1 : 0.2 (w/w))、紡糸時間(30秒)など諸条件の最適化により、平均ファイバー径は2 m、平均ファイバー間隔は6 mに制御された。足場に播種されたマウス筋芽細胞C2C12細胞およびラット初代筋芽細胞は、ファイバー間の空隙に入り込みながらファイバーに沿って配向・融合して筋管を形成し、これら筋管は同一方向へ高密度に集合して全長1 cmの三次元細胞構造体を形成した。三次元筋線維束組織の断面および切片をそれぞれSEMおよびワンギーソン染色法により画像解析したところ、断面のサイズは40 x 120 mで、設計通りにコラーゲンファイバーは組織全体に散在していた。 代表的な骨格筋マーカーであるミオシン重鎖で蛍光免疫染色を行い観察したところ、筋管組織の平均長は290 mであり一部の筋構造体には筋線維に特徴的な横紋がみられた。そこで、C2C12細胞から作製した三次元筋線維束組織に電気刺激を与えたところ、収縮が見られなかった。一方で、初代筋芽細胞から作製した組織では電気刺激を与えなくても自発的な収縮が観察され、運動機能を有する再生骨格筋組織の構築を達成した。今後は電気刺激与えてそのパターンにより運動を制御することを試みる。また、平行して取り組んでいる初代神経細胞から作製する再生神経束組織と共培養し、神経筋接合部の形成を評価すると共に、神経組織からのシグナル入力による骨格筋組織の運動制御にも取り組む予定である。

三次元可変集束層流マイクロ流体デバイスによるマクロ複合生体組織の創製

2013

Research Results Outline:[緒言]細胞からのin vitroでの生体組織の作製研究は近年大きな注目を集めており、特に、移植医療への応用も可能なセンチメートル以上の大型組織の作製[緒言]細胞からのin vitroでの生体組織の作製研究は近年大きな注目を集めており、特に、移植医療への応用も可能なセンチメートル以上の大型組織の作製が望まれている。長大な血管組織や神経組織を作製するためには、マイクロ径のファイバー状ハイドロゲル内...[緒言]細胞からのin vitroでの生体組織の作製研究は近年大きな注目を集めており、特に、移植医療への応用も可能なセンチメートル以上の大型組織の作製が望まれている。長大な血管組織や神経組織を作製するためには、マイクロ径のファイバー状ハイドロゲル内で細胞を三次元包埋培養するアプローチが有力な手法と考え、本研究では、Core-Sheath状の同軸二層型ゲルファイバーを連続的に作製し得る新規なマイクロ流体デバイス(三次元可変シースフローマイクロ流体デバイス)を開発した。このゲルファイバー内部で血管内皮細胞または神経系細胞を包埋培養し、血管組織や神経組織の作成に向けた内皮細胞の融合および神経突起の伸長挙動を評価すると共に、これらを効率的に誘導する生体高分子ゲル材料についても検討した。[結果と考察]三次元可変シースフローマイクロ流体デバイスは、細胞を流すCoreとなる層に外側の流路からゲル作製用高分子溶液(Sheath層)を二段階であてて周囲を取り囲みながらCore層を流路中央へと寄せることで、Core-Sheath状の同軸二層を実現する設計とした。さらに、最外層の流路から供給したゲル化水溶液で高分子をゲル化させ、流れに乗せてゲルファイバーをデバイス外へと排出させる工夫を施した。まず、それぞれの流路を流れる各溶液の流量比を調節することによって、Core層の直径を10 μmから40 μm程度まで調節できることを確認した。続いて、Ca2+との錯形成でハイドロゲルを形成するアルギン酸をSheath層から導入し、最外流路からはCa2+を供給して細胞をCore層に包埋したゲルファイバーを作製した。Core-Sheath状の同軸二層型ゲルファイバーの形成は、細胞と一緒にCore層にFITC標識コラーゲンを導入して蛍光でCore層のみを可視化することで確認した。Core層にPC12細胞を導入し、Sheath層のゲル材料にはアルギン酸のみを用いた実験では、三日間の培養において神経様突起がCore層に沿って伸長する様子が観察され、また80%以上のviabilityが得られた。さらに、より細胞培養に適した培養場とするため、Sheath層のハイドロゲル材料について検討を加えた。多糖であるアルギン酸に同じく多糖類のカラギーナンを組み合わせたり、細胞の三次元培養足場に頻用されるゼラチンやフィブリン(いずれもタンパク質)とアルギン酸との組み合わせについても評価した。ウシ大動脈血管内皮細胞(BAEC)をCore層に導入して検討したところ、カラギーナンとの組み合わせではゲルが脆くなってしまったのに対し、ゼラチンおよびフィブリンと組み合わせたゲルファイバーでは十分なゲル強度が確保され、90%以上のviabilityが得られた。さらに細胞が一列に連なった構造体が観察された。今後のさらなる研究進展により、本デバイスを用いて作製したゼラチンやフィブリンを主体とするゲルファイバーを用いて、長大な毛細血管や神経組織の構築が期待される。

分子・細胞・組織の階層的集積と統合による運動器官生体ロボットの創製

2013

Research Results Outline:  生体には、細胞や基質が一方向に配向して構造化し機能を発現する組織が見られる。骨格筋組織では、筋芽脂肪が縦一列に整列・融合して筋管へと分化し、筋管  生体には、細胞や基質が一方向に配向して構造化し機能を発現する組織が見られる。骨格筋組織では、筋芽脂肪が縦一列に整列・融合して筋管へと分化し、筋管は筋線維へと成熟する。多数の筋線維は同一方向に配向しながら三次元の束となって大きな収縮力を示す骨格...  生体には、細胞や基質が一方向に配向して構造化し機能を発現する組織が見られる。骨格筋組織では、筋芽脂肪が縦一列に整列・融合して筋管へと分化し、筋管は筋線維へと成熟する。多数の筋線維は同一方向に配向しながら三次元の束となって大きな収縮力を示す骨格筋組織を形成する。さらに、骨格筋の端は腱組織へと連なるが、この腱組織は主に配向したⅠ型コラーゲン線維からなり、線維軟骨へと移行しながら傾斜的に石灰化が進み、最終的に骨へ埋入する。このような構造と機能をもった骨格筋と腱の三次元組織をin vitroで工学的に作製することを目指し、エレクトロスピニング法により生体適合性材料を用いて作製したマイクロファイバーを基盤とした三次元培養足場を構築した。 骨格筋組織の作製では、ファイバー同士に適度な間隔を与えつつ同一方向に配向させて中空に張った「弦状」の足場を作製した。これまでに、I型コラーゲンで作製した長さ1 cm x 幅5 mmの弦状足場でラット初代骨格筋細胞を培養して三次元筋組織を構築した成果を踏まえて、より大型の組織作製に取り組んだ。このため、I型コラーゲンに生分解性高分子であるポリカプロラクトン(PCL)を組み合わせてファイバーの強度を向上させ、ドラムコレクタを用いてファイバーの配向化を効率的に行なうことで、長さ2 cm x 幅1 cmへと足場の大型化を達成した。この足場にラット初代骨格筋細胞を播種し21~24日間培養することで、拍動120回/分、収縮率2%程度の自発的収縮能を有し横紋構造をもつ骨格筋組織の形成を達成した。蛍光抗体染色と画像解析による組織中央部における横紋組織の存在率は、約70%と見積もられた。 腱組織については、長さ1 cmの弦状足場の半分を塩化カルシウム溶液とリン酸水素二ナトリウム溶液へ交互に浸漬し、ファイバー束の半分にHApを析出させた傾斜的石灰化三次元足場を作製した。XPSによる元素組成の解析から、傾斜的にHApが析出していることが確認された。この足場に線維芽細胞NIH3T3、前骨芽細胞MC3T3-E1さらにヒト骨髄由来間葉系幹細胞(hbmMSC)をそれぞれ播種したところ、傾斜化した足場の線維部、移行部、HAp化部の各局所において細胞の形態・分布が変化した。また、腱マーカーであるスクレラキシス(Scx)遺伝子の発現をqRT-PCRにより定量的に解析したところ、足場材料の違いによりhbmMSCsのScx遺伝子発現の変化が示唆された。 以上の結果を踏まえて、今後、各再生組織の構造と機能の改善をさらに進めると共に、別途作製を進めている神経束組織や血管組織とも組み合わせて複合組織・器官の構築を目指す。

界面π造形の可逆的光制御システムの構築と細胞挙動操作

2017

Research Results Outline: 光応答性スピロピラン分子(SP)を導入した疎水ブロックと親水ブロックからなるジブロック共重合体を合成し、アルキル基で疎水化したガラス基材へナノ薄膜状 光応答性スピロピラン分子(SP)を導入した疎水ブロックと親水ブロックからなるジブロック共重合体を合成し、アルキル基で疎水化したガラス基材へナノ薄膜状に修飾した光応答性基板を開発した。特に、高分子組成および基材界面のアルキル鎖を系統的に変化させ、光... 光応答性スピロピラン分子(SP)を導入した疎水ブロックと親水ブロックからなるジブロック共重合体を合成し、アルキル基で疎水化したガラス基材へナノ薄膜状に修飾した光応答性基板を開発した。特に、高分子組成および基材界面のアルキル鎖を系統的に変化させ、光刺激に対する表面物性ならびに細胞接着性の変化を評価した。その結果、表面親疎水性変化(親水→疎水)がSPの光異性化に伴う極性変化(疎水→親水)と相反し、また紫外光の照射で細胞が接着・伸展し可視光の照射では細胞は脱着した。この現象は、高分子鎖の動的な高次構造変化に起因し、高分子間のみならず高分子薄膜と基材界面での相互作用も重要であることを明らかにした。

紙とマイクロファイバーの重層基材を基盤とした再生生体組織培養システムの創製

2017Collaborator:今任 景一

Research Results Outline: 本研究では、紙の上にエレクトロスピニング法で生分解性高分子のマイクロファイバーを紡糸した二層基材を作製した。マイクロファイバー層には細胞接着と培養場 本研究では、紙の上にエレクトロスピニング法で生分解性高分子のマイクロファイバーを紡糸した二層基材を作製した。マイクロファイバー層には細胞接着と培養場の機能を担わせ、特にファイバー表面にBreath Figure法でナノサイズの多孔を形成させて細胞... 本研究では、紙の上にエレクトロスピニング法で生分解性高分子のマイクロファイバーを紡糸した二層基材を作製した。マイクロファイバー層には細胞接着と培養場の機能を担わせ、特にファイバー表面にBreath Figure法でナノサイズの多孔を形成させて細胞接着性の向上を実現した。さらに、紙の吸水能とサイフォン原理を利用して培養液を自律的に灌流するシステムとし、筋芽細胞を播種して細胞の挙動に及ぼす培養液の流れストレスの効果を定量的に評価した。その結果、静置培養時と比較して細胞増殖ならびに筋管形成の増大が引き起こされることが分かった。すなわち、流れストレスは筋管形成への効率的な分化刺激となることが示された。

再生医工学への応用に向けた芯/鞘二重構造マイクロファイバーの高機能化戦略

2017Collaborator:今任 景一

Research Results Outline:  エレクトロスピニング法により芯/鞘二重構造を持つ機能性マイクロファイバーを作製し、細胞培養基材に応用した。紫外光照射でナノ鞘層の高分子表  エレクトロスピニング法により芯/鞘二重構造を持つ機能性マイクロファイバーを作製し、細胞培養基材に応用した。紫外光照射でナノ鞘層の高分子表面のぬれ性が増すファイバー基材では、光刺激により細胞の接着性が有意に増大した。この光制御機能は、光...  エレクトロスピニング法により芯/鞘二重構造を持つ機能性マイクロファイバーを作製し、細胞培養基材に応用した。紫外光照射でナノ鞘層の高分子表面のぬれ性が増すファイバー基材では、光刺激により細胞の接着性が有意に増大した。この光制御機能は、光応答性を担う分子の高分子鎖内への導入率が高いほど向上した。また、芯層に導電性高分子を導入して、細胞接着性の高分子の鞘層で被覆したファイバー材料も作製した。このファイバー基材上で筋芽細胞を培養すると、電位を負荷しない条件にもかかわらず鞘層のみの足場と比較して増殖率および筋管形成率が有意に増大し、再生筋組織の作製基材として優れることを見出した。

マイクロ材料工学を基盤とした大型三次元生体組織の構築と複合組織化による機能制御

2014Collaborator:庄子 習一, 関口 哲志, 有坂 慶紀, 奥 仁美, 小町 駿介, 南齋 浩樹, 後藤 耀諒, 近澤 朋亮

Research Results Outline:再生医療応用を目指し、細胞を組み上げて三次元の生体組織を作製する研究が大きな注目を集めている。管腔化した三次元組織である毛細血管は、他の再生組織の深部再生医療応用を目指し、細胞を組み上げて三次元の生体組織を作製する研究が大きな注目を集めている。管腔化した三次元組織である毛細血管は、他の再生組織の深部へ血流を供給する応用も期待され、重要な研究のターゲットである。本研究では、血管内皮細胞から長大な毛...再生医療応用を目指し、細胞を組み上げて三次元の生体組織を作製する研究が大きな注目を集めている。管腔化した三次元組織である毛細血管は、他の再生組織の深部へ血流を供給する応用も期待され、重要な研究のターゲットである。本研究では、血管内皮細胞から長大な毛細血管組織の作製を目的とし、長さ数十cm ~ mスケール、直径約100μmの同軸二層のCore[芯]–Sheath[鞘]型(CS型)ゲルファイバー三次元培養場を、独自に開発した三次元的な層流を形成できるマイクロ流体デバイスにより作製した。Core層に血管内皮細胞を懸濁して導入し、Sheath層に生体適合性の高い混合ゲルを用いて包埋培養し、管腔化した毛細血管組織の作製に成功した。Fabricating engineered tissues by assembling individual cells is ofgreat interest to engineers and scientists. Tissues and organs of a human bodyhave three-dimensional fine structures, and their size is centimeter and/ormeter scale. Therefore, for regenerative medicine applications, engineeredtissues should be the same size, and it is necessary to develop innovativetechnologies to assemble the cells into a three-dimensional and largestructure. In this study, we developed the novel microfluidic device, which canform three-dimensional laminar flow in its micro channel, and we applied this deviceto fabricate the engineered blood capillaries (vessels).The three-dimensional laminar flow consists of a core layer and acoaxially surrounding sheath layer. By continuously introducing different solmaterials to each layer and subsequently gelating them, the double layeredhydrogels of fiber shape were fabricated. Vascular endothelial cells were alsosuccessively introduced in the core layer and three-dimensionally cultured inthe hydrogel fiber so that the cells autonomously developed into long bloodcapillary. Various biopolymers were used as gel materials and examined how theyaffect gel fiber formation and tissue development.

配向化コラーゲン線維束三次元足場の傾斜的石灰化と腱骨移行部再生組織構築への応用

2014Collaborator:有坂 慶紀

Research Results Outline:腱組織は、配向したⅠ型コラーゲン線維が傾斜的に石灰化しながら線維軟骨組織を経て骨組織へと埋入する。腱断裂において線維軟骨は再生されないために、再生組織腱組織は、配向したⅠ型コラーゲン線維が傾斜的に石灰化しながら線維軟骨組織を経て骨組織へと埋入する。腱断裂において線維軟骨は再生されないために、再生組織の作製が期待されている。本研究では、生体組織構造を模倣して、配向Ⅰ型コラーゲンマイクロファイバーに...腱組織は、配向したⅠ型コラーゲン線維が傾斜的に石灰化しながら線維軟骨組織を経て骨組織へと埋入する。腱断裂において線維軟骨は再生されないために、再生組織の作製が期待されている。本研究では、生体組織構造を模倣して、配向Ⅰ型コラーゲンマイクロファイバーに傾斜的にハイドロキシアパタイトを析出させた新たな三次元培養足場を構築した。さらに、この足場上で培養した線維芽細胞と間葉系幹細胞が、足場構造に応じて生体内と同様な細胞形態へと変化することを見出した。さらに、傾斜的石灰化構造に応じた間葉系幹細胞の腱細胞への分化誘導を示唆する新たな知見を得た。The tendon tissue consists of uniformly oriented typeI collagen fibers. These collagen fibers gradually bear hydroxyapatite and areembedded into bone tissue. For constructing a regenerative tendon tissue, a three-dimensionaland oriented collagen microfiber scaffold, on which hydroxyapatite gradually deposited,was fabricated by mimicking the native tissue. Depending on the graduallychanging components of the scaffold, the fibroblasts and mesenchymal stem cells(MSCs) cultured on the scaffold was found to change their shape as they take invivo. Furthermore, the novel data suggesting that MSCs differentiated intotendon cells depending on the scaffold structure was obtained.

同軸重層マイクロゲルファイバーを基盤とした成熟血管組織作製システムの創成

2015

Research Results Outline:細胞を組み上げて三次元の生体組織を作製する再生医療研究において、拡散により栄養や酸素が十分に行き届くのが困難な組織内部へこれらを血流により供給する長大細胞を組み上げて三次元の生体組織を作製する再生医療研究において、拡散により栄養や酸素が十分に行き届くのが困難な組織内部へこれらを血流により供給する長大な毛細血管組織の構築は極めて重要である。本研究では、基本ユニットを積層化させて作製し、三次元的な層...細胞を組み上げて三次元の生体組織を作製する再生医療研究において、拡散により栄養や酸素が十分に行き届くのが困難な組織内部へこれらを血流により供給する長大な毛細血管組織の構築は極めて重要である。本研究では、基本ユニットを積層化させて作製し、三次元的な層流を安定して形成できる新たなマイクロ流体デバイスを開発し、血管内皮細胞からの血管組織構築に有用な同軸二層のマイクロゲルファイバー培養足場の作製。新デバイスによりゲルファイバーの作製効率の向上を達成すると共に、アルギン酸に細胞接着ペプチドを化学修飾した新たなゲル材料の作製も進めた。Fabrication of large, long, and/or thick engineeredtissues, which are implantable to human body for regenerative medicine,attracts great interest. For this purpose, fabrication and introduction of 3Dand long blood vessels to maintain cells in the internal area of 3D tissues arecritical and the challenging subjects. In this study, the co-axial doublelayered microgel fibers (micrometers in diameter but tens of centimeters inlength) were prepared as the 3D culture scaffolds. The 3D sheath flowmicrofluidic device was improved and the new-type device, which was composed thestacking basic units, was developed. Effective fabrication of the microgel fiberswas also achieved using this device. Vascular endothelial cells were three-dimensionallycultured in the core layer of the microgel fiber and formed luminal structure. Thegel materials increased in cell-adhesion worked to enhance formation of luminalcapillary.

紙とマイクロファイバーの重層基材からなる自律駆動型灌流培養システムによる組織構築

2016

Research Results Outline: 本研究では、紙とゼラチンファイバーからなる重層化細胞培養足場を基盤とし、紙の毛細管現象を培養液の自律的な駆動力に利用すると共にサイフォン原理を組み合 本研究では、紙とゼラチンファイバーからなる重層化細胞培養足場を基盤とし、紙の毛細管現象を培養液の自律的な駆動力に利用すると共にサイフォン原理を組み合わせて連続的な送液が可能である、これまでにないシンプルで大面積かつ開放系での細胞培養場を有する新た... 本研究では、紙とゼラチンファイバーからなる重層化細胞培養足場を基盤とし、紙の毛細管現象を培養液の自律的な駆動力に利用すると共にサイフォン原理を組み合わせて連続的な送液が可能である、これまでにないシンプルで大面積かつ開放系での細胞培養場を有する新たな自律駆動型の灌流培養システムを開発した。さらに、血管内皮細胞単独ならびに血管内皮細胞と異種細胞との灌流共培養を行った。その結果、静置培養との比較において、血管内皮細胞が流れに応答して挙動を顕著に変化させることを見出した。これより、本灌流培養システムが、血管組織構築に有効なシェアストレスを効果的に負荷できることを示した。

気液界面培養システムによる生体の構造・機能を有する腸管上皮モデル組織の作製

2019

Research Results Outline:医薬品や機能性食品等の開発に有用な、生体同様の形態と機能を有する腸管上皮モデル組織を構築した。腸管の内腔は気層に面するため、本研究では、気相に接した気医薬品や機能性食品等の開発に有用な、生体同様の形態と機能を有する腸管上皮モデル組織を構築した。腸管の内腔は気層に面するため、本研究では、気相に接した気液界面で腸管上皮細胞を培養できる、紙の上に高分子マイクロファイバーをマット状に紡糸した二層構造から...医薬品や機能性食品等の開発に有用な、生体同様の形態と機能を有する腸管上皮モデル組織を構築した。腸管の内腔は気層に面するため、本研究では、気相に接した気液界面で腸管上皮細胞を培養できる、紙の上に高分子マイクロファイバーをマット状に紡糸した二層構造からなる培養器材を開発した。上層の高分子ファイバーで高い細胞接着性を実現し、下層の紙に保持した培養液をファイバーの間隙から上層へ供給して気液界面培養を可能とした。作製した腸管上皮モデル組織は、小腸に特有の絨毛突起様の三次元構造体を形成し、apical面には微絨毛や細胞間には密着結合が形成された。また、消化酵素や薬物代謝酵素も発現し、粘液産生能が顕著に増大した。

Lecture Course

Course TitleSchoolYearTerm
Introduction to Bioscience A DenshibutsuriSchool of Fundamental Science and Engineering2020spring semester
Introduction to Bioscience A Kenchiku, keiei, shakou, shigenSchool of Creative Science and Engineering2020spring semester
Introduction to Bioscience B SeiiSchool of Advanced Science and Engineering2020spring semester
Introduction to Bioscience A SougoukikaiSchool of Creative Science and Engineering2020spring semester
Introduction to Bioscience A Kagaku, OukaSchool of Advanced Science and Engineering2020spring semester
Basic Experiments in Science and Engineering 2B KagakuSchool of Advanced Science and Engineering2020fall semester
Basic Experiments in Science and Engineering 2B SeiiSchool of Advanced Science and Engineering2020fall semester
Biology LaboratorySchool of Fundamental Science and Engineering2020an intensive course(spring)
Biology LaboratorySchool of Creative Science and Engineering2020an intensive course(spring)
Biology LaboratorySchool of Advanced Science and Engineering2020an intensive course(spring)
Life Science and Medical Bio-science Seminar ISchool of Advanced Science and Engineering2020spring semester
Life Science and Medical Bio-science Seminar I [S Grade]School of Advanced Science and Engineering2020spring semester
Organic Chemistry ASchool of Advanced Science and Engineering2020fall quarter
Organic Chemistry A [S Grade]School of Advanced Science and Engineering2020fall quarter
Analytical Chemistry ASchool of Advanced Science and Engineering2020fall semester
Analytical Chemistry A [S Grade]School of Advanced Science and Engineering2020fall semester
Life Science and Medical Bio-science Seminar IISchool of Advanced Science and Engineering2020fall semester
Life Science and Medical Bio-science Seminar II [S Grade]School of Advanced Science and Engineering2020fall semester
Advanced Life Science and Medical Bioscience LaboratorySchool of Advanced Science and Engineering2020spring semester
Life Science and Medical Bio-science Laboratory IISchool of Advanced Science and Engineering2020spring semester
Life Science and Medical Bio-science Laboratory II [S Grade]School of Advanced Science and Engineering2020spring semester
Graduation ResearchSchool of Advanced Science and Engineering2020full year
Graduation Research [S Grade]School of Advanced Science and Engineering2020full year
Frontier Biomedical EngineeringSchool of Advanced Science and Engineering2020spring quarter
Life Science and Medical Bio-science Laboratory IVSchool of Advanced Science and Engineering2020spring semester
Life Science and Medical Bio-science Laboratory VSchool of Advanced Science and Engineering2020fall semester
Biomaterial Science and EngineeringSchool of Advanced Science and Engineering2020spring semester
Life Science and Medical Bioscience Seminar IISchool of Advanced Science and Engineering2020spring semester
Bioscience Practicals ASchool of Advanced Science and Engineering2020fall semester
Bioscience Practicals BSchool of Advanced Science and Engineering2020spring semester
Graduation Thesis ASchool of Advanced Science and Engineering2020fall semester
Graduation Thesis BSchool of Advanced Science and Engineering2020spring semester
Advanced Bioscience SeminarSchool of Advanced Science and Engineering2020fall semester
Introduction to Medical ScienceSchool of Advanced Science and Engineering2020an intensive course(fall)
Introduction to Medical ScienceSchool of Advanced Science and Engineering2020an intensive course(fall)
Master's Thesis (Department of Life Science and Medical Bioscience)Graduate School of Advanced Science and Engineering2020full year
Research on Biomaterials Science and EngineeringGraduate School of Advanced Science and Engineering2020full year
Research on Biomaterials Science and EngineeringGraduate School of Advanced Science and Engineering2020full year
Advanced Biomedical EngineeringGraduate School of Advanced Science and Engineering2020fall semester
Advanced Biomaterials Science and EngineeringGraduate School of Advanced Science and Engineering2020spring semester
Advanced Biomaterials Science and EngineeringGraduate School of Advanced Science and Engineering2020spring semester
Seminar on Biomaterials Science and Engineering CGraduate School of Advanced Science and Engineering2020spring semester
Seminar on Biomaterials Science and Engineering CGraduate School of Advanced Science and Engineering2020spring semester
Seminar on Biomaterials Science and Engineering DGraduate School of Advanced Science and Engineering2020fall semester
Seminar on Biomaterials Science and Engineering DGraduate School of Advanced Science and Engineering2020fall semester
Master's Thesis (Department of Life Science and Medical Bioscience)Graduate School of Advanced Science and Engineering2020full year
Research on Biomaterials Science and EngineeringGraduate School of Advanced Science and Engineering2020full year
Practical Training for Career BuildingGraduate School of Advanced Science and Engineering2020full year
Biomaterials, NanomedicineGraduate School of Advanced Science and Engineering2020fall semester
Introduction of Life Science 01Global Education Center2020spring semester
Introduction of Life Science 02Global Education Center2020spring semester

Others Educational Activity

Tetsuya Kurebayashi

Detail

Outline:Poster Presentation Award for the Excellent Research, 4th CSJ Chemistry Festa 2014

Yutaro Nakamura

Detail

Outline:Poster Presentation Award for the Excellent Research, 3rd CSJ Chemistry Festa 2013

Hitomi Oku

Detail

Outline:Best Award, International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2013 & 5th Sensing Biology Symposium

Aya Tsubokura

Detail

Outline:ICBS2013 Biomaterials Science Poster Prize (sponsored by RSC Publishing), 2nd International Conference on Biomaterials Science (ICBS2013)

Aya Tsubokura

Detail

Outline:Poster Presentation Award for the Excellent Research, 2nd CSJ Chemistry Festa 2012

Kenichi Tamura

Kenichi Tamura

Detail

Outline:Poster Presentation Award for the Excellent Research, 1st CSJ Chemistry Festa 2011

Yoshifumi Kawagishi

Detail

Outline:Poster Presentation Award for the Excellent Research, 1st CSJ Chemistry Festa 2011

Social Contribution

筋芽細胞培養に新たな道 (報道)

2017/11-

Event ・Program ・ Title:日経産業新聞(報道)

培養細胞、生存率6倍 (報道)

2011/01-

Event ・Program ・ Title:日経産業新聞(報道)

マイクロ・ナノバイオテクノロジーを駆使して、血管や筋肉組織をつくる

2018-

Event ・Program ・ Title:Harima Quarterly 2018, 137:6―9.

Place:137:6―9.